Previously:
Context-free grammars
Pushdown automata
Equivalence, direction 1: CFG \rightarrow PDA

Today:
Equivalence, direction 2: PDA \rightarrow CFG
Assignment 4 due
Exam 1 graded

Exam 1 statistics

- Min: 70 (rounded)
- Avg: 86 (rounded)
- Max: 97 (rounded)
- Std. dev.: 7.6

A long, long time ago...
Example of a CFG

Production rules: substitutions

Non-terminals: variable that can have a substitutions

Terminals: symbols that are part of the alphabet, no substitutions

Start variable: left side of top-most rule

A → aAb
A → B
B → ε

Formal CFG notation

Productions = rules of the form
head → body

head is a variable
body is a string of zero or more variables and/or terminals

Start Symbol = variable that represents “the language”

Notation: G = (V, Σ, P, S)

V = variables
Σ = terminals
P = productions
S = start symbol

Pushdown Automata

Add a stack to a FA
Typically non-deterministic
An automaton equivalent to CFGs

Finite state control

x b c c a a input

stack

y

z

x, y → z

q

Notation

If at state p with next input symbol x and top of stack is y:

Go to state q and replace y by z on stack

x = ε: Ignore input; don’t read.
y = ε: Ignore top of stack and push z.
z = ε: Pop y.
Equivalence of CFGs and PDAs

For every CFG, we showed we can generate a nondeterministic PDA that recognizes the language the CFG generates.

Now we'll show that we can generate a CFG to generate the language a nondeterministic PDA recognizes.

PDA to CFG

Convert PDA P into CFG G.

First modify P to be a normalized PDA N so that:

- It has a single accept state, q_{accept}
- Create ϵ-transitions from old accept states to this new accept state
- It empties the stack before accepting
 - Push a special character $\$$ on the stack in the start state (introducing a new start state in the process)
 - Introduce a new temporary state q_{temp} that replaces q_{accept}, which has transitions popping all characters from the stack (except $\$$)

Introduce transition:

$\text{q}_{\text{temp}} \xrightarrow{\epsilon, \$$} \epsilon \xrightarrow{\epsilon} \text{q}_{\text{accept}}$

Continued…

Each transition either pushes a symbol onto the stack or pops one off the stack, but not both at the same time

Replace a simultaneous pop/push move with a two-transition rule that goes through a new state

E.g.,

$\text{q}_i \xrightarrow{a, b \rightarrow c} \text{q}_j$

(read a from input, pop b from stack, push c)

Introduce special state q'_{temp} plus 2 transitions, one doing pop and one doing push:

$\text{q}_i \xrightarrow{a, b \rightarrow \epsilon} \text{q}'_{temp} \xrightarrow{\epsilon, \epsilon \rightarrow c} \text{q}_j$

Replace a transition that neither pops nor pushes with two transitions that push and then immediately pop some newly-created dummy stack symbol

$\text{q}_i \xrightarrow{a, \epsilon \rightarrow \epsilon} \text{q}_j \xrightarrow{a, \epsilon \rightarrow X} \text{q}'_{temp} \xrightarrow{\epsilon, X \rightarrow \epsilon} \text{q}_j$

$\text{q}_i \xrightarrow{a, \epsilon \rightarrow X} \text{q}_j \xrightarrow{a, \epsilon \rightarrow \epsilon} \text{q}'_{temp} \xrightarrow{\epsilon, X \rightarrow \epsilon} \text{q}_j$
Normalizing the PDA: Example

Original PDA:

\[L(N) = (ba \cup baa)^*b \cup \varepsilon \]

Pure push pop

Make sure the stack is always active by replacing inactive stack moves by a push followed by immediate pop of a dummy symbol.

Pure push pop

Any move that replaces the top letter on the stack should be changed into a pop followed by a push.

Unique accept state

Turn off original accept states and connect to a new accept state.

Remember: each move must either push or pop from the stack.
Empty stack

Make sure the stack empties its content by adding a new dummy empty stack symbol and new start/accept states

\[\epsilon, \epsilon \rightarrow \$
\]

\[b, \epsilon \rightarrow X
\]

\[a, \epsilon \rightarrow \epsilon
\]

\[\epsilon \rightarrow D
\]

\[\epsilon \rightarrow \epsilon
\]

\[\epsilon \rightarrow Y
\]

\[\epsilon \rightarrow D
\]

\[\epsilon \rightarrow \epsilon
\]

\[X \rightarrow \epsilon
\]

\[Y \rightarrow \epsilon
\]

\[\epsilon \rightarrow D
\]

\[\epsilon \rightarrow \epsilon
\]

\[D \rightarrow \epsilon
\]

\[PDA \text{ to CFG: Intuitive description}
\]

Consider normalized PDA \(N = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}) \)

Starts in \(q_{\text{start}} \) with an empty stack

Ends in \(q_{\text{accept}} \) with an empty stack

In general, can define the language \(L_{pq} \), for any two states \(p, q \in Q \)

which is the language of all strings that start in \(p \) with an empty stack, and end in \(q \) with an empty stack

For each pair of states \(p \) and \(q \), define a symbol \(S_{pq} \) in the CFG for the language \(L_{pq} \)

Language of \(N \) is \(L_{q_{\text{start}}q_{\text{accept}}} \)

Steps to process \(w \in L_{pq} \)

Two possibilities:

During the processing of \(w \) the stack becomes empty at some intermediate state \(r \).

This means a word of \(L_{pq} \) can be formed by concatenating:

- a word of \(L_{pr} \) (which brought \(N \) from state \(p \) to state \(r \) with an empty stack)
- a word of \(L_{rq} \) (which brought \(N \) from state \(r \) to state \(q \) with an empty stack)

Stack is never empty in the middle of \(N \)'s transit from \(p \) to \(q \) in processing \(w \).

The first transition (from, say, \(p \) to \(p_1 \)) must have been a push.

The last transition (from, say, \(q_1 \) to \(q \)) must have been a pop.

The pop popped exactly the symbol pushed by the first transition from \(p \) to \(p_1 \).

Case where the stack is never empty between \(p \) and \(q \):

In other words:

The PDA read \(a \) from input as it moved from \(p \) to \(p_1 \).

The PDA read \(b \) from input as it moved from \(q_1 \) to \(q \).

Then \(w = ayb \), where \(y \) is an input that causes the PDA \(N \) to start from \(p \) with an empty stack and end in \(q \) with an empty stack i.e., \(y \in L_{p_1q_1} \).

Formally, if there is a push transition (pushing \(X \) onto the stack) from \(p \) to \(p_1 \) (reading \(a \)) and a pop transition from \(q_1 \) to \(q \) (popping \(X \) and reading \(b \)), then a word in \(L_{pq} \) can be constructed from the expression \(aL_{p_1q_1}b \).

Note that either or both of \(a \) or \(b \) could be \(\epsilon \).
The construction

For every state \(p \), introduce the rule

\[
A_{pp} \rightarrow \epsilon
\]

Empty string can always be considered as getting you from \(p \) to \(p \) without doing anything to the stack, since nothing was read

Concatenation rule

For the case where the stack empties in the middle of transition from \(p \) to \(q \), introduce, for all states \(p, q, r \) of \(N \), the rule

\[
A_{pq} \rightarrow A_{pr} \: A_{rq}
\]

Recursion rule

For the case where the stack is never empty, for any given states \(p, p_1, q_1, r \) of \(N \), such that there is a push transition from \(p \) to \(p_1 \) and a pop transition from \(q_1 \) to \(r \) (that push and pop the same symbol), introduce an appropriate rule

Formally, for \(p, p_1, q_1, r \) of \(N \) with the form

introduce the rule

\[
A_{pr} \rightarrow aA_{p_1q_1}b
\]
Formal definition (from Sipser)

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ be a PDA

There is a context-free grammar G with non-terminals \{A_{pq} \mid p, q \in Q\}

Rules:

- For each $p, q, r, s \in Q, t \in \Gamma, a, b \in \Sigma$, if $\delta(p, a, \epsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ϵ), put the rule $A_{pq} \rightarrow aA_{rs}b$ in G
- For each $p, q, r \in Q, p \neq r$, put the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ in G
- For each $p \in Q$, put the rule $A_{pp} \rightarrow \epsilon$ in G

The grammar

The rules for generating paths give a grammar to generate all labels of such paths.

The grammar has non-terminals A_{qr} which will generate all strings x that are processed when passing from state q to state r.

Q: Under this assumption, what should the production body (right hand side) for the start variable S be?

The Grammar Symbols

A: $S = A_{q_{\text{start}}q_{\text{accept}}}$, where q_{start} is the start state and q_{accept} is the final state.

In addition to this start variable, the other variables are all A_{qr} for which there is a path going from q to r that starts and ends with an empty stack.

Note that Sipser doesn’t require the extra condition that there exist a path from q to r which starts and ends with an empty stack; his method generates all possible combinations. However, those pairs qr for which no such path exists will create useless variables A_q, which end up cluttering the grammar and making the construction extremely ugly, even on the simplest PDAs. On the other hand, it is not obvious how one would determine a priori which of the pairs don’t have such paths, which probably explains why Sipser didn’t include this condition.

Grammar Rules

- **Basis rule:** Add a production $A_{qq} \rightarrow \epsilon$ for each state q in the PDA.
- **Concatenation rule:** Add a production $A_{pr} \rightarrow A_{pq}A_{qr}$ for all p, q, r when A_{pr}, A_{pq} and A_{qr} are all in V (the variables of the CFG).
- **Recursion rule:** Add a production $A_{ps} \rightarrow aA_{qr}b$ for all p, s, q, r when A_{ps} and A_{qr} are in V.

Transitions $(q, X) \in \delta(p, a, \epsilon), (s, \epsilon) \in \delta(r, b, X)$ for the same stack symbol X exist in the PDA.
Example

PDA in the normalized form:

A: “CNP” = correctly nested parentheses, including sets of pairs [e.g., ()()]. The number of Xs on the stack reflects how deep the current nesting is.

Q: What are the variables for the equivalent grammar? What is the start variable?

A: \(V = \{ A_{qs}, A_{qq}, A_{rr}, A_{ss}, A_{rq}, A_{sq}, A_{sr}, A_{qr} \} \)

\(S = A_{qs} \)

Are there any useless variables?

- We don’t need \(A_{rq}, A_{sq}, A_{sr} \) because the paths go in the wrong direction
- We don’t need \(A_{qr} \) or \(A_{rs} \) because can’t add or remove $ while at \(r \)
 - I.e., no transition where you both begin and end with an empty stack

Productions from the Base Rule

Add a production \(A_{qq} \rightarrow \epsilon \) for each state \(q \) in the PDA

Empty string can always be considered as getting you from \(p \) to \(p \) without doing anything to the stack, since nothing was read

\(A_{qq} \rightarrow \epsilon \)
\(A_{rr} \rightarrow \epsilon \)
\(A_{ss} \rightarrow \epsilon \)
Productions from the concatenation rule

Add a production $A_{pq} \rightarrow A_{pq}$ for all p, q when A_{pq} are all in V

If you can get from some state p to another state p_1, starting and ending with the stack empty (regardless of stack activity in the processing of moving from p to p_1), and from q to q under the same conditions, then combine paths to get a path from p to q.

$V = \{A_{qs}, A_{qq}, A_{rr}, A_{ss}\}$

Productions from the recursion rule

Add a production $A_{pq} \rightarrow aA_{pq}$ for all p, q when A_{pq} are in V

For any given states p, p_1, q_1, q of N, such that there is a push transition from p to p_1 and a pop transition from q_1 to q (that push and pop the same symbol), i.e., there exist transitions $\delta(p, a, \epsilon)$ contains (p_1, X) and $\delta(q_1, b, X)$ contains (q, ϵ), put the rule $A_{pq} \rightarrow aA_{pq}$

Full Grammar

$A_{qs} \rightarrow A_{rr} | A_{qq} A_{qs} | A_{qs} A_{ss}$
$A_{rr} \rightarrow \epsilon | A_{rr} A_{rr} | (A_{rr})$
$A_{qq} \rightarrow \epsilon | A_{qq} A_{qq}$
$A_{ss} \rightarrow \epsilon | A_{ss} A_{ss}$

Simplifications

Apparently A_{qq} and A_{ss} are purely self-referential, so there is no way to terminate them – that is, no string can be derived from them.

We can therefore remove the variables A_{qq}, A_{ss}

Becomes:

$A_{qs} \rightarrow A_{rr} | A_{qs}$
$A_{rr} \rightarrow \epsilon | A_{rr} A_{rr} | (A_{rr})$
Showing that the grammar works…

\[A_{qs} \rightarrow A_{rr} | A_{qs} \]
\[A_{rr} \rightarrow \varepsilon | A_{rr} A_{rr} | (A_{rr}) \]

Rename variables to get:

\[S \rightarrow T | S \]
\[T \rightarrow \varepsilon | TT | (T) \]

So the final (cleaned up) grammar is

\[T \rightarrow \varepsilon | TT | (T) \]

Another example

Consider the language \(L = \{wcw^R \mid w \in \{a, b\}^* \} \).

A non-normalized PDA for this language is:

\[a, \varepsilon \rightarrow a \]
\[b, \varepsilon \rightarrow b \]
\[a, a \rightarrow \varepsilon \]
\[b, b \rightarrow \varepsilon \]
\[s \rightarrow c, \varepsilon \rightarrow \varepsilon \]

Convert to normalized form

1. Create new start and accepting states
2. All transitions either pop or push except \(c, \varepsilon \rightarrow \varepsilon \); change to two transitions that push and pop a dummy symbol

Generate grammar

1. Add start symbol and a production \(A_{qq} \rightarrow \varepsilon \) for each state \(q \) in the PDA

\[S \rightarrow A_{s'q} | A_{qq} \rightarrow \varepsilon \]
\[A_{s'q} \rightarrow \varepsilon \]
\[A_{qf} \rightarrow \varepsilon \]
\[A_{ss} \rightarrow \varepsilon \]
\[A_{aa} \rightarrow \varepsilon \]
Generate grammar

2. Add a production \(A_{pr} \rightarrow A_{pq} A_{qr} \) for all \(p, q, r \) when \(A_{pr}, A_{pq} \) and \(A_{qr} \) are all in \(V \)

\[A_{s'} \rightarrow A_{s's'}A_{s'a} | A_{s'a}a \]

Generate grammar

3. Add a production \(A_{ps} \rightarrow aA_{qr}b \) for all \(p, s, q, r \) when \(A_{ps} \) and \(A_{qr} \) are in \(V \) and transitions \((q, X) \in \delta(p, a, \varepsilon) \) and \((s, \varepsilon) \in \delta(r, b, X) \) for the same stack symbol \(X \) exist in the PDA

\[A_{s'} \rightarrow \$A_{sf}\$
\[A_{sf} \rightarrow cA_{qq}\varepsilon | bA_{sf}b | aA_{sf}a \]

Final grammar

<table>
<thead>
<tr>
<th>Final grammar</th>
<th>More readable</th>
<th>Simplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow A_{s'o})</td>
<td>(S \rightarrow T)</td>
<td>(\rightarrow Z)</td>
</tr>
<tr>
<td>(A_{s'o} \rightarrow \varepsilon)</td>
<td>(R \rightarrow \varepsilon)</td>
<td>(Z \rightarrow c)</td>
</tr>
<tr>
<td>(A_{oo} \rightarrow \varepsilon)</td>
<td>(U \rightarrow \varepsilon)</td>
<td>(Z \rightarrow bZb)</td>
</tr>
<tr>
<td>(A_{pp} \rightarrow \varepsilon)</td>
<td>(V \rightarrow \varepsilon)</td>
<td>(Z \rightarrow aZa)</td>
</tr>
<tr>
<td>(A_{qq} \rightarrow \varepsilon)</td>
<td>(W \rightarrow \varepsilon)</td>
<td></td>
</tr>
<tr>
<td>(A_{qq} \rightarrow \varepsilon)</td>
<td>(X \rightarrow \varepsilon)</td>
<td></td>
</tr>
<tr>
<td>(A_{pp} \rightarrow \varepsilon)</td>
<td>(T \rightarrow RT)</td>
<td></td>
</tr>
<tr>
<td>(A_{pp} \rightarrow \varepsilon)</td>
<td>(T \rightarrow TX)</td>
<td></td>
</tr>
<tr>
<td>(A_{pp} \rightarrow \varepsilon A_{pp})</td>
<td>(T \rightarrow \varepsilon E)</td>
<td></td>
</tr>
<tr>
<td>(Z \rightarrow cV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z \rightarrow bZb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z \rightarrow aZa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(R, U, W, X \) contribute only \(\varepsilon \) so can be eliminated
- \(T \rightarrow RT \) and \(T \rightarrow TX \) then become \(T \rightarrow T \), which is obviously unnecessary
- \(S \) is superfluous because it only gets you to \(T \)
- \(T \) is superfluous because it only gets you to \(Z \)