Variants of Turing Machines

- Many alternative definitions of TMs exist
- The original model and its reasonable variants have the same power
 - Recognize the same languages
- E.g., a TM that can move left, right, or “stay put”
 - No new power though because could always simulate the “stay put” move with two moves, one to the left and one to the right, in the original TM
 - This example is key to showing equivalence of TM variants

Previously:
Introduce Turing machines

Today:
Assignment 5 back
TM variants, relation to algorithms, history

Later
Exam 2 due Friday, 5pm
Assignment 6 out

A lot of models for computation turn out to be equivalent (especially variants of Turing machines). To show they are equivalent, give a way to simulate one model with the other.
Multi-tape TMs

Allow the TM to have some finite number of tapes k, with a head for each tape

- Move is a function of the state and the symbol scanned by each tape head
- Action = new state, new symbol for each tape, and a head motion (L, R)
- First tape holds the input, other tapes are initially blank

Every multi-tape TM has an equivalent single-tape TM

Proof: show how to convert multi-tape TM M to an equivalent single tape TM S

- If M has k tapes, S simulates the effect of k tapes by storing the same information on its single tape
- Uses a new symbol # as a delimiter to separate the contents of the different tapes
- S must also keep track of the locations of the heads on each tape
 - Writes a tape symbol with a dot above it to mark where the head on that tape would be
 - Dotted symbols are simply new symbols added to the tape alphabet

Definition of S

On input $w = w_1 \ldots w_n$:

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains
 \[
 \# w_1 \# w_2 \# \ldots \# w_n \# 0 1 0 1 0 \ldots
 \]

2. To simulate a single move, S scans its tape from the first # (marks the left end) to the $(k+1)$th # (marks the right end) to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M's transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto a #, this action signifies that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this cell to the rightmost #, one unit to the right. Then it continues the simulation as before.
Nondeterministic TM

- Let the TM have a **finite set of choices of move**
- Components of NDTM same as TM
- Transition function may indicate that more than one move is possible

NDTM

- **Arbitrarily chooses move** when more than one possibility exists
- **Accepts if there is at least one computation that terminates in an accepting state**
 - Existence of other computations that halt in non-accepting states or fail to halt altogether is irrelevant

NDTM Computation

Evolution of the NTM represented by a tree of configurations

If there is (at least) one accepting leaf, then the TM accepts

NTM

$L_{NDTM} = \{wcz \mid c \text{ is immediately preceded or followed by the string } ab\}$

Processes input until a c is encountered; then, can stay in state q_1, enter state q_2 to determine if the c is followed by ab, or enter q_3 to determine if the c is preceded by ab
Simulating Nondeterministic TMs with Deterministic Ones

We want to search every path down the tree for accepting configurations.

Bad idea: depth-first
- This approach can get lost in never-halting paths.

Good idea: breadth-first
- For time step 1, 2, ..., we list all possible configurations of the non-deterministic TM.
- The simulating TM accepts when it lists an accepting configuration.

Breadth-First

Let b be the maximum number of children for a node.

Any node in the tree can be uniquely identified by a string $\in \{1, \ldots, b\}^*$.

Example: location of the rejecting configuration is $(3, 1)$.

With the lexicographical listing ε, (1), (2), ..., (b), $(1, 1)$, $(1, 2)$, ..., $(1, b)$, $(2, 1)$, ... etc., we cover all nodes.

Every nondeterministic TM has an equivalent deterministic TM

Proof:

Let M be the nondeterministic TM on input w.
Let M' be the deterministic TM.

The simulating TM M' uses three tapes:
1. T_1 contains the input w.
2. T_2 simulates the tape content of M on w at a given node.
3. T_3 keeps track of the current location in the nondeterministic computation tree.

Steps in the simulation:
1. Empty string (symbolizing address of the root) is written on T_3.
2. Input string on T_1 is copied to T_2.
3. The computation of M defined by the sequence on T_3 is simulated on T_2.
4. If no more symbols remain on T_3, a nondeterministic choice is invalid, or a rejecting configuration is found, abort this branch and go to step 6.
5. If an accepting configuration is found, the computation of M' halts and accepts the input.
6. If the computation did not halt in step 4, the next sequence is generated on T_3 and the computation continues at step 3.

Robustness

Just like k-tape TMs, nondeterministic Turing machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent 3-tape Turing machine, which – in turn – has an equivalent 1-tape Turing machine.

Hence

A language L is recursively enumerable (Turing recognizable) if and only if some nondeterministic TM recognizes it.

A language L is recursive (decidable) if and only if some nondeterministic TM decides it.
Turing’s World example

Turing’s World example

Turing’s World example