Decidability

Previously:
- Turing machines as a model of what is computable
- Introduce problems that cannot be computed

Today:
- (Un)decidability
- Diagonalization proofs

Procedures Versus Algorithms

There are two senses in which a TM accepts a language:
1. The TM accepts the strings in the language (by final state), but does not halt on some of the strings not in the language:
 - Thus, we can never be sure whether those strings are rejected, or eventually will be accepted
 - A language accepted in this way is called recursively enumerable (RE)
 - Such a language is called undecidable
 - The TM is sometimes referred to as a procedure
2. The TM accepts by final state, but halts on every string, whether or not it is accepted:
 - A language accepted this way is called recursive
 - As a problem, the question is called decidable
 - The TM is called an algorithm
Decidable Problems

- Acceptance problem for DFAs
 - Does a particular DFA accept a given string
 - Can represent this problem as a language
 \[A_{\text{DFA}} = \{ <B,w> \mid B \text{ is a DFA that accepts } w \} \]
- Problem of testing whether DFA \(B \) accepts \(w \)
 same as testing if \(<B,w> \) is a member of \(A_{\text{DFA}} \)
- Prove by designing a TM that decides \(A_{\text{DFA}} \)

Proof

- Proof given here will be in high-level descriptive language (like pseudocode), rather than explicitly drawing out state diagrams
- Write the proof in quotes to emphasize that the description is informal but there is a precise mathematical formulation

\(A_{\text{DFA}} \) is Decidable

\[M = \text{“on input } <B,w>, \text{ where } B \text{ is a DFA and } w \text{ is a string:} \]
1. Simulate \(B \) on \(w \)
2. If the simulation ends in an accept state, \(\text{accept} \). If it ends in a non-accepting state, \(\text{reject} \).”

Other decidable problems

- Emptiness Problem for DFAs
 \[E_{\text{DFA}} = \{ <A> \mid A \text{ is a DFA and } L(A) \text{ is empty} \} \]

\[M = \text{“on input } <A>, \text{ where } A \text{ is a DFA:} \]
1. Mark the start state of \(A \)
2. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked
3. If no accept state is marked, \(\text{accept} \). Otherwise, \(\text{reject} \).”
Other decidable problems

Equivalence Problem for DFAs

\[EQ_{\text{DFA}} = \{ <A,B> | A, B \text{ are DFAs and } L(A) = L(B) \} \]

\(F = \) “on input \(<A,B>\), where \(A \) and \(B \) are DFAs:
1. Construct DFA \(C \) to accept strings that are accepted by either \(A \) or \(B \) but not both
2. Run \(E_{\text{DFA}} \) on input \(<C>\)
3. If \(E_{\text{DFA}} \) accepts, accept. If \(E_{\text{DFA}} \) rejects, reject.”

Parsing problem

\[A_{\text{CFG}} = \{ <A,w> | A \text{ is a CFG and } w \text{ is in } L(A) \} \]

\(S = \) “on input \(<G,w>\), where \(G \) is a CFG and \(w \) is a string:
1. Convert \(G \) to an equivalent grammar in Chomsky normal form
2. List all derivations with \(2n-1 \) steps, where \(n \) is the length of \(w \)
3. If any of these derivations generate \(w \), accept. Otherwise, reject.”

Undecidable problems

• **Undecidable** problems have no algorithm, regardless of whether or not they are accepted by a TM that fails to halt on some inputs
• We will prove undecidable the following problem:

 Does this TM accept this input?

An undecidable problem

\[A_{\text{TM}} = \{ <M,w> | M \text{ is a TM and } M \text{ accepts } w \} \]

• But it is recursively enumerable (“Turing-recognizable”)
 – So recognizers are more powerful than deciders!

\(U = \) “On input \(<M,w>\) where \(M \) is a TM and \(w \) is a string
1. Simulate \(M \) on input \(w \)
2. If \(M \) ever enters an accept state, accept; if \(M \) ever enters a reject state, reject”
• But \(U \) loops on input if \(M \) loops on \(w \), so does not **decide** \(A_{\text{TM}} \)
Goal

Prove undecidable the language consisting of pairs $<M, w>$ such that
1. M is a TM with input alphabet $\{1, 0\}$
2. w is a string of 0s and 1s
3. M accepts input w

$A_{TM} = \{<M, w> \mid M$ is a TM and M accepts $w\}$

If this problem with restricted inputs is undecidable, then the more general problem where TMs may have any alphabet is surely undecidable

Plan

1. **Show a particular language not to be RE**
 - Like the “hello-world” argument, we show no TM can tell whether a given TM halts on a given input – the proof is by “diagonalization” or self-reference
2. **Use the non-RE language from (1) to show another language to be RE, but not recursive**
 - **Trick:** if a language and its complement are both RE, then they are both recursive
 - Can you figure out why?
 - Thus, if a language L is RE, but its complement is not, then L is not recursive
3. **Use this method to show that the Halting Problem is undecidable**
 - Halting Problem is “does a given TM M halt given input string w, regardless of whether it accepts or rejects?”

The Diagonalization Method

- Use to prove the undecidability of the halting problem
- Discovered by Cantor in 1873 in the process of trying to determine how to tell which of two infinite sets is larger
 - Cantor observed that two finite sets have the same size if the elements of one can be paired with the other
 - Extended this to infinite sets
Encoding TMs as Integers

We will focus on TMs whose input alphabet is \{0, 1\}. Each such TM can be represented by one or more integers, using the following code:

- Assume the **states** are \{q_1, q_2, \ldots\}. **Represent** \(q_i \) by \(0^i \)
- Assume the **tape symbols** are \{X_1, X_2, \ldots\}, where the first three of these are 0, 1, and \(B \), in that order. **Represent** \(X_i \) by \(0^i \)
- **Represent** directions \(L \) and \(R \) by 0 and 00, respectively, and refer to them as \(L = D_1, R = D_2 \)
- **Represent** a **rule** of the TM \(\delta(q_i, X_j) = (q_k, X_l, D_m) \) by \(0^i10^j10^k10^l10^m \)

- **Represent** the whole TM by \(111 C_111 C_211 \ldots 11C_n111 \), where \(C_i \) is the code for one of the \(\delta \) rules, in any order
- **Conversely**, every integer \(i \) can be said to describe some TM \(M_i \)

 - If \(i \) in binary is not of the right form (111 code...), then \(M_i \) is the TM with no moves
 - Note that many integers represent the same TM, but that is neither good nor bad

Facts about TMs

- **The set of all TMs is infinite**
 - Any TM has a finite encoding as a string over \{0, 1\}.
 - There is an infinite number of such strings
- **The set of all TMs is countable**
 - Each TM corresponds to an integer interpretation of the string of 0s and 1s used to represent it
 - We call a set **countable** if either it is finite or it has the same size as \(\mathbb{N} \), the set of natural numbers \(\{1, 2, 3, \ldots\} \)
- **The set of all TMs is Recursively Enumerabile**
 - Any countable set can be produced by an **enumeration procedure** – i.e., a method by which its elements can be written in some sequence

The Diagonalization Language

- Define \(L_d \) to be the **set of binary strings** \(w \) with the following properties:
 1. First, let \(i \) be the integer that is \(w \) in binary
 - Refer to \(w \) as the “ith string” or \(w_i \)
 2. \(w_i \) is in \(L_d \) if and only if \(w_i \) is not in \(L(M_i) \)
 - That is, \(L_d \) consists of all strings \(w \) such that the TM \(M \) whose code is \(w \) does not accept when given \(w \) as input
Suppose the set of all TMs is infinite.

Proof

- Each row is the characteristic vector for M_i.
- L_d cannot be the characteristic vector of any TM because it disagrees in some column with every row of the table.
- Thus, the diagonalization cannot represent the language of any TM.

Use diagonalization when you want to construct an element that is different from every element on a given list. This is used in proofs by contradiction, for example, when you want to show a function can’t hit every element of a set.

The Trick

- Each row is the characteristic vector for M_i.
- L_d cannot be the characteristic vector of any TM because it disagrees in some column with every row of the table.
- Thus, the diagonalization cannot represent the language of any TM.

Another Example

This one is sometimes easier to grasp:

- If S is an infinite countable set, then its power set, 2^S, is not countable, and hence not RE.
- **Proof:** Let $S = \{s_1, s_2, s_3, \ldots\}$. Any element t of 2^S can be represented by a sequence of 0s and 1s with 1 in position i if and only if s_i is in t.
 - E.g., the set $\{s_2, s_3, s_6\}$ is represented by 01100100..., $\{s_1, s_3, s_5\}$ is 10101...
 - Every such sequence represents a unique element of 2^S.

Proof L_d is not recursively enumerable

No TM exists for L_d.

- Suppose L_d is RE. Then $L_d = L(M)$ for some TM M.
- Input alphabet of M is $\{0, 1\}$.
- M is M_i for at least one value of i.
- Question: is w_i in L_d?
 - **Suppose so.** Then M_i accepts w_i because $L_d = L(M_i)$. But by definition of L_d, w_i is not in L_d because it contains only those w_j not accepted by any M_j (Contradiction).
 - **Suppose not.** Then w_i is in $L(M_i)$ by definition of L_d. But $L(M_i) = L(M) = L_d$, so w_i is in L_d (Contradiction).
 - Since we derive a contradiction in either case, we conclude that our assumption $L(M) = L_d$ was wrong, and in fact, there is no such TM M.

Diagonalization

Each cell tells whether machine i accepts string j.

Diagonal values tell whether machine M_j accepts w_i.

L_d is constructed by complementing the diagonal.

$L_d = 1, 0, 0, 0, \ldots$
• Suppose 2^S is countable; its elements can be written as $t_1, t_2, t_3...$

• Enter in a table with rows labels t_i, take main diagonal’s complement

	t_1	t_2	t_3	t_4	...
t_1	1	0	0	0	...
t_2	1	1	0	0	...
t_3	1	1	0	1	...
t_4	1	1	0	1	...

Complement of diagonal =

0 0 1 1

Can’t be t_1

Can’t be t_2

Can’t be t_3

Can’t be t_4

Consequence

There are fewer Turing machines than there are languages

Therefore, some languages must not be recursively enumerable

Language relationships

Recursive = decidable = algorithm = TM that always halts
Recursively enumerable = undecidable = TM accepts but does not halt
Non-RE = undecidable = no TM exists for this language

We care primarily about recursive vs. the rest – i.e., what is decidable and what is not