Today:

Finish discussing reductions

Then:

Graded exam 2
Review for final exam
World domination

Example reduction:

Empty language?

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable

Proof idea:

- By contradiction
- Assume E_{TM} is decidable
- Let R be a TM that decides E_{TM}
- Use R to construct S, a TM that decides A_{TM}
• When S receives input $\langle M, w \rangle$, it calls R with input M
• If R accepts, then reject, because M does not accept w
 – i.e., R says $L(M)$ is empty, so it must not accept w
• But what if R rejects?
 – Then $L(M)$ is not empty
 – So, we don’t know if M accepts w or not
 – **Solution: Modify M**

Define M_2, a modified version of M:
• On input x:
 – Run M on w
 1. If M rejects, **reject**. (We want M_2 to be a TM that accepts the empty language.)
 2. Otherwise, if M accepts w, then we have to set things up so that M_2 accepts something other than the empty language. As a convenience, have it accept a single string, w:
 – If $x = w$, **accept**
 – Else, **reject**

• For some reductions, we simulate M on w first, before we test x
• Code for M_w looks like:
 – Simulate M on w
 – If M rejects, **reject**
 – Otherwise, **accept** exactly when x has some easily tested property P

An example of this pattern is the proof of Rice’s theorem; see Sipser’s solved exercise 5.28
Tips

- Note that the string w is an input to the machine S, i.e., the machine that decides A_{TM}, and the string x is an input to the Turing machine M_2.
- The input to the Turing machine R is usually the code for the machine M_2, but w and x are not inputs to R:
 - The value of w may be hardcoded into the code for M_2.
 - The value of x is **not specified**. You can imagine that M_2 asks the user to input a value for x.

Reductions Involving Languages

Is an arbitrary Turing-recognizable language empty?

- Reduce A_{TM} to this problem
- Suppose we are given a TM M and a string w
- Modify M such that
 1. M first saves its input (say, x) on some special part of its tape
 2. Whenever M enters a final state, it checks the saved input and accepts **if and only if** it is w
- Do this by changing δ in a simple way:
 - Create a machine M_w such that $L(M_w) = L(M) \cap \{w\}$

- Then construct a corresponding grammar G_w
- Clear that $L(G_w)$ is nonempty if and only if $w \in L(M)$
- Assume there exists an algorithm A for deciding whether or not $L(G) = \emptyset$
- Let T denote an algorithm by which we generate G_w
- Put T and A together to create a TM that for any M and w, tells us whether or not $w \in L(M)$:
Conclusion

• If such a Turing machine existed, we would have a membership algorithm for RE languages
• But we know membership for REs is undecidable
• So, \(L(G) = \emptyset \) is not decidable

Is \(L(M) \) finite?

• Use \(HALT_{TM} \) again
• From \(M \) construct another TM \(M' \) in which
 – Halting states of \(M \) are changed so that if any one is reached, all input is accepted by \(M' \)
 – Achieve this by having any halting configuration go to a final state
 – \(M \) is modified so that \(M' \) first generates \(w \) on its tape, then performs the same computations as \(M \) using the newly created \(w \) and some other unused space
 – Moves of \(M' \) after writing \(w \) on its tape are the same as those performed by \(M \), had it started in the original configuration \((q_0, w)\)
• If \(M \) halts on any configuration, then \(M' \) will halt in a final state

More reductions

• If \((M, w)\) halts, \(M' \) will halt in a final state for all input
• If \((M, w)\) does not halt, \(M' \) will not halt either and so will accept nothing
• In other words: \(M' \) either accepts the infinite language \(\Sigma^* \) or the finite language \(\emptyset \)
• If we assume the existence of an algorithm \(A \) that tells whether \(L(M') \) is finite, then can solve the halting problem:

\[
\begin{array}{c}
M, w \quad \text{GENERATE} \quad M' \\
\text{FINITENESS ALGORITHM} \quad A \\
L(M') \text{ finite} \\
\text{Does not halt} \\
L(M') \text{ not finite} \\
\text{Halts}
\end{array}
\]
Does $L(M)$ contain two strings of the same length?

- Use the same approach as in the previous example, except when M' reaches a halting configuration, it is modified to accept two strings a and b of equal length.
- To do this:
 1. Initial input is saved and at the end of the computation compared to a and b.
 2. Accepts only these two strings.
- Therefore, if (M, w) halts, M' will accept two strings of equal length.
- Otherwise M' accepts nothing.
- Finish up the argument as in the previous problem.

Are two TMs equivalent?

$EQ_{\text{TM}} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

Theorem: EQ_{TM} is undecidable

- We are getting tired of reducing everything to A_{TM} or $HALT_{\text{TM}}$.
- Let’s try reduction to E_{TM}.

Theorem: EQ_{TM} is undecidable

Proof Idea:

- E_{TM} is the problem of testing whether a TM’s language is empty.
- EQ_{TM} is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to E_{TM}.
- So E_{TM} is a special case of EQ_{TM}.
- The rest is easy.

Let M_{NO} be the Turing machine:

- **1. reject**

Let R decide EQ_{TM}

Let S be:

- **On input** $\langle M \rangle$:
 1. Run R on input $\langle M, M_{\text{NO}} \rangle$.
 2. If R accepts, accept; if R rejects, reject.
Bucket of Undecidable Problems

Same techniques prove undecidability of
- Does a TM accept a decidable language?
- Does a TM accept a context-free language?
- Is there an input string that causes a TM to traverse all its states?
- Does $L(M)$ contain any string of length 5?

These are (creatively) called “similar questions”

Rice’s Theorem

- By now, some of you may have become cynical and embittered
- Like, been there, done that, bought the T-shirt

Rice’s Theorem

- By now, some of you may have become cynical and embittered
- Like, been there, done that, bought the T-shirt
 - $500 Raf Simons sweatshirt
Rice’s Theorem

- By now, some of you may have become cynical and embittered
- Like, been there, done that, bought the T-shirt
- Looks like any non-trivial property of TMs is undecidable

That is correct

If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given Turing machine M, $L(M)$ is in C

Undecidable Problems About CFLs

PCP is a convenient tool for studying undecidable questions about CFLs

Example:

- You have been asked to convert regular expressions to DFAs, but there’s an algorithm to convert REs to DFAs, so it’s possible for you to succeed
- Suppose you are asked to take a CFG and tell whether it is ambiguous. You can’t do it because the problem is undecidable!
Reduction of PCP to CFG Ambiguity Problem

Given lists A and B, construct grammar as follows:

- $S \to A \mid B$.
- A is the start symbol for a grammar from list A; B is the same for list B.
- If there is a solution to the PCP instance, then the same string can be derived starting $S \Rightarrow A$ and $S \Rightarrow B$.

 Conversely, the only way a string can have two leftmost derivations is if they begin in these two ways, because the grammar of each list is unambiguous.

Example

Use the lists $\langle 1, 0, 010, 11 \rangle$ and $\langle 10, 10, 01, 1 \rangle$

Let a, b, c, d stand for the four index integers

- That is, we have

The grammar is:

\[
S \to A \mid B \\
A \to 1Aa \mid 0Ab \mid 010Ac \mid 11Ad \mid \varepsilon \\
B \to 10Ba \mid 10Bb \mid 01Bc \mid 1Bd \mid \varepsilon
\]

Each string has a unique derivation from A and B.

Ambiguity can only come from S.

A string with two leftmost derivations:

10101001011 dccaba

CONCLUSION:

The grammar constructed from (A, B) is ambiguous if and only if there is a solution to instance (A, B) of PCP.

- In this case, there is a way to get a corresponding pair of strings.

Language theory and computation
A Hierarchy of Formal Languages and Automata

- We have already seen the following:
 - A language is **recursively enumerable** if there is a TM that accepts it
 - A language is **recursive** if there is a TM that accepts it and halts on every w in Σ^*
 - There are languages that are **not recursively enumerable** (i.e., the ones we showed are not countable using the diagonalization argument)
 - There are RE languages whose complement is not RE
 - If both a language and its complement are RE then both are recursive
 - There are RE languages that are not recursive – i.e., the family of recursive languages is a proper subset of the family of RE languages

Unrestricted Grammars

A grammar (V,T,S,P) is **unrestricted** if all the productions are of the form $u \to v$, where u is in $(V \cup T)^+$ and v is in $(V \cup T)^*$

- Basically, no restrictions imposed on productions
 - Any number of variables on the left and right-hand sides
 - Can occur in any order
 - Only restriction is that ε cannot appear on the left side of a production

Any language generated by an unrestricted grammar is **recursively enumerable**

- **Proof**: the grammar in effect defines a procedure for enumerating all the strings in the language systematically
- Since the set of productions is finite, we can simulate the derivations on a TM to enumerate every string in the language

The Chomsky Hierarchy

- **Recursively Enumerable Languages**
 - Turing machine
- **Context-Sensitive Languages**
 - Linear bounded automata
- **Context-Free Languages**
 - Pushdown automata
- **Regular Languages**
 - Finite automata

Expanded Hierarchy

- **Non-RE Languages**
- **Recursive Languages**
 - Turing Machine that halts
- **Context-Sensitive Languages**
 - Linear Bounded Automata
- **Context-Free Languages**
 - Pushdown Automata
- **Deterministic CFL**
 - Deterministic PDA
- **Regular Languages**
 - Finite Automata
Congratulations!
You Now Know The Whole Story!

Appendix

Undecidable Problem
Is the Intersection of Two CFLs Empty?

• Consider the two list languages from a PCP instance. They have an empty intersection if and only if the PCP instance has no solution.
Complements of List Languages

- We can get other undecidability results about CFLs if we first establish that the complement of a list language is a CFL.
- PDA is easier approach.
- Accept all ill-formed input (not a sequence of symbols followed by indexes) using the state.
- For inputs that begin with symbols from the alphabet of the PCP instance, store them on the stack, accepting as we go.
- When index symbols start, pop the stack, making sure that the right strings were found on top of the stack; again, keep accepting until…
- When we expose the bottom-of-stack marker, we have found a sequence of strings from the PCP list and their matching indexes. This string is not in the complement of the list language, so don’t accept.
- If more index symbols come in, then we have a mismatch, so start accepting again and keep on accepting.

Undecidable Problem: Is a CFL Equal to Σ^*?

- Take an instance of PCP, say lists A and B.
- The union of the complements of their two list languages is Σ^* if the instance has no solution, and something less if there is a solution.

Undecidable Problem
Is the Intersection of Two CFLs Regular?

- Key idea: the intersection of list languages is regular if and only if it is empty. Thus, PCP reduces to regularity of intersection for CFLs.
- Obviously, if empty, it is regular.
- Suppose the intersection of two list languages, for A and B, $L_A \cap L_B$ is nonempty. Then there is a solution to this instance of PCP, say string w and string of index symbols i.
 - Example: for the running PCP instance, $w = 10101001011$ and $i = abaccd$.
• Then i^k is an index sequence that yields solution w^k for all k.
 – General principle: concatenation of PCP solutions is a solution.
• Consider homomorphism $h(0) = w$ and $h(1) = i^R$.
• $h^{-1}(L_A \cap L_B)$ is $\{0^n1^n \mid n \geq 1\}$
• Since regular languages are closed under inverse homomorphism, if the intersection were regular, so would $h^{-1}(L_A \cap L_B)$ be.
• Since we know this language is not regular, we conclude that $L_A \cap L_B$ is not regular.