CMPU 240

Theory of Computation

Spring 2021
It’s Thursday, the 354th day of March, 2020.
‘I wish it need not have happened in my time,’ said Frodo.

‘So do I,’ said Gandalf, ‘and so do all who live to see such times. But that is not for them to decide. All we have to decide is what to do with the time that is given us.’

Today, we’ll

Talk a bit about logistics,

Introduce the big questions of the course, and

Learn some important notation.
Course information
First, an advertisement

I’m also teaching

CMPU 187: Introduction to Digital Humanities, a six-week course in the second half of the semester. It’s 0.5 credit, pass/fail.

It’s not related to this one, but it has seats and it will be fun!
Prerequisites

CMPU 102: Data Structures and Algorithms

CMPU 145: Foundations of Computer Science
Course website

cs.vassar.edu/~cs240
On the course website will be links to the other two sites we use:

CampusWire

Use for general discussion about the course content

Use for all questions about the course

- You can post anonymously.
- You can send private questions to me.

Gradescope

Use for submitting assignments and receiving feedback
Grading

Assignments: 35%

8–10 homework assignments
Grading

Take-home Exam 1, before Spring Break
Grading

- Assignments: 35%
- Exam 1: 20%
- Exam 2: 20%

Take-home Exam 2, after Spring Break
Grading

- Assignments: 25%
- Exam 1: 20%
- Exam 2: 20%
- Exam 3: 20%
- Take-home Exam 3 near the end of the semester: 35%
"This is the best book on computers I have ever read."
—Peter Thomas, New Scientist

The Pattern on the Stone

The Simple Ideas That Make Computers Work

W. Daniel Hillis
Hillis’s Connection Machine CM-2a

Photo by Steve Grohe for Thinking Machines Corporation
Hillis’s Connection Machine CM-5 in Jurassic Park
Syllabus

Read for more details on the course.

There will be an additional handout on how assignments will work.
Student survey

https://forms.gle/wCyXMkdbyrSbJjJiE6
What’s a computer?
“Hey, whatcha doing on your computer?”

“What’s a computer?”
But, seriously, what’s a computer?
A small suan pan (Chinese abacus)

Photo from the Computer History Museum
Hand-cranked Curta calculator, c. 1950
Photo from the Computer History Museum
Some kinds of computers have more computational power than others.

We can abstract devices of the “same kind” to produce models of computers and ask what kinds of problems can be solved under a particular model.
Present-day computers are built out of transistors and wires.

They could be built, according to the same principles, from valves and water pipes or from sticks and strings.
Mechanical implementation of the or function

W. Daniel Hillis,
The Pattern on the Stone,
1998
Hydraulic implementation of the or function

W. Daniel Hillis,
The Pattern on the Stone,
1998
One of the most remarkable things about computers is that their essential nature transcends technology.

Why do we need theory?
In the practice of computing, where we have so much latitude for making a mess of it, mathematical elegance is not a dispensable luxury, but a matter of life and death.

Theory shows the elegant side of computers

We usually think of computers as complicated machines.

The best computer designs and applications are conceived with elegance in mind.

A theoretical course can heighten your aesthetic sense and help you build more elegant systems.
Theory expands your mind

Computer technology changes quickly.

Studying theory enables you to understand the underlying models of all computation, not just technical details that become outdated in a few years.

Studying theory trains you in abilities with lasting value:

Think and express yourself clearly and precisely.

Solve problems – and know when you haven’t solved a problem.
He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast.

Leonardo da Vinci, “Prolegomena and General Introduction to the Book on Painting”
Theory is relevant to practice

Provides conceptual tools that practitioners use in computer engineering

Design a new programming language for a special application – need (context-free) grammars!

String searching and pattern matching – use finite automata and regular expressions!
When developing solutions to real problems, we often confront the limitations of what software can do:

Undecidable things – no program whatever can do it

Intractable things – there are programs, but no fast programs

Theory gives you the tools.
Theoretical computer science has many fascinating big ideas, but also many small (and sometimes dull) details.

The more you learn, the more interesting it becomes.

Our goal: Be exposed to the exciting aspects of computer theory without getting bogged down in drudgery.
How could we talk about computation?
Automata, computability, and complexity

Linked by the question: *What are the fundamental capabilities and limitations of computers?*

Each area interprets the question differently:

Automata theory: Definitions and properties of mathematical models of computation.

Computability: Is a given problem solvable or unsolvable?

Complexity: Is a given problem easy or hard?
Automata theory

We start with *automata theory*:

Theories of computability and complexity require a *precise definition of a computer*.

Automata theory allows practice with formal definitions of computation as it introduces concepts relevant to other, non-theoretical areas of computer science.
The central idea in the theory of computation is that of a *universal computer*, a computer powerful enough to simulate any other computing device.

Most computers we encounter in everyday life are universal computers.

With the right software – and enough time and memory – they can simulate any other type of computer…
Universal computers
Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.
The idea of a universal computer was recognized and described in 1937 by Alan Turing.¹

He called it a “universal machine” since at the time, “computer” still meant “a person who performs computations”.

¹ Poor Alonzo Church is a footnote. Where’s his movie?
The idea of a universal computer was recognized and described in 1937 by Alan Turing.¹

He called it a “universal machine” since at the time, “computer” still meant “a person who performs computations”.

¹ Poor Alonzo Church is a footnote. Where’s his movie?
The central idea in the theory of computation is that of a *universal computer*, a computer powerful enough to simulate any other computing device.

Most computers we encounter in everyday life are universal computers.

With the right software – and enough time and memory – they can simulate any other type of computer… *or – as far as we know – any other device at all that processes information.*
HYPOTHESIS: *Any* computing device – made of transistors, sticks and strings, or neurons – can be simulated by a universal computer.

This suggests that making a computer think like a brain is just a matter of programming it correctly!
While a universal computer can compute anything that can be computed any other computing device, there are some things that are just impossible to compute.
Questions for which we lack data

“What is the winning number in tomorrow’s lottery?”
Vaguely defined questions

“What is the meaning of life?”

“42!”
But there are also flawlessly defined computational problems that are impossible to solve.

We call these problems *noncomputable*.
What exactly are the limits to what a computer can do?

We'll work to an answer of this over the semester!

This will take us through the philosophically interesting topics of nondeterminism, Turing machines, computability, and Gödel's incompleteness theorem.
Course overview

Study categories of languages and machines:

- Regular languages and finite automata
- Context-free languages and pushdown automata
- Unrestricted languages and Turing machines

Study solvability:

- The Halting Problem and its ramifications
Describing languages
We can describe a *language* as a set of strings.
Strings

A string is a sequence of characters/symbols.
Strings

A *string* is a sequence of characters/symbols.

In a programming language, a string is written with quotation marks, e.g., "*sleepy otters*".

 Punctuation goes outside the quotation marks because we’re not animals.
Strings

A string is a sequence of characters/symbols.

In a programming language, a string is written with quotation marks, e.g., "sleepy otters".

Punctuation goes outside the quotation marks because we’re not animals.

In language theory, we omit the quotation marks and use visible characters for any spaces, e.g., sleepy otters.
Strings

If you’re programming, what’s """"?
Strings

If you’re programming, what’s ""?

It’s a string of length 0. (In fact, it’s the only string of length 0!)
Strings

If you’re programming, what’s ""?

It’s a string of length 0. (In fact, it’s the only string of length 0!)

We call it the empty string.
Strings

If you’re programming, what’s """"?

It’s a string of length 0. (In fact, it’s the only string of length 0!)

We call it the empty string.

Because we don’t use quotation marks in theory, we write it as epsilon, ε.
A set is an unordered collection of 0 or more objects of any type, e.g.,

\(\emptyset \)

\(\{\} \)

\(\{0\} \)

\(\{0, 1\} \)

\(\mathbb{N} \)

\(\mathbb{N}_0 \)
A set is an unordered collection of 0 or more objects of any type, e.g.,

- \emptyset
 0 objects – the empty set

- $\{}$
 0 objects – the empty set

- $\{0\}$
 1 object – the set containing the number 0

- $\{0, 1\}$
 2 objects – the set containing the numbers 0 and 1

- \mathbb{N}
 infinite objects – the set of all natural numbers

- \mathbb{N}_0
 infinite objects – the set of all natural numbers including 0
For a set to be a language, it can’t have any elements except for strings.

∅

{ε}

{a}

{a, b}
For a set to be a language, it can’t have any elements except for strings.

\[\emptyset\] 0 strings – the **empty language**

\[\{\varepsilon\}\] 1 string – the language containing the empty string

\[\{a\}\] 1 string – the language containing the string \(a\)

\[\{a, b\}\] 2 strings – the language containing the strings \(a\) and \(b\)
What, then, is the English language?
What, then, is the English language?

The C programming language?
The set of all binary strings consisting of some number of 0s followed by an equal number of 1s?
The set of all binary strings consisting of some number of 0s followed by an equal number of 1s?

\{\varepsilon, 01, 0011, 000111, \ldots\}
A language can be *finite*, i.e., only contain a fixed number of strings, even if that number is large.

A language can be *infinite*, i.e., contain an unbounded number of strings.
What does this have to do with computation?
“The set (language) of all computer programs”

“The set (language) of all problems to solve”
Thus, for any nondeterministic Turing machine M that runs in some polynomial time $p(n)$, we can devise an algorithm that takes an input w of length n and produces $E_{M,w}$. The running time is $O(p(n))$ on a multitape deterministic Turing machine and...

WTF, man. I just wanted to learn how to program video games.
Acknowledgments

This lecture incorporates material from:

- W. Daniel Hillis
- John Hopcroft
- Nancy Ide
- Keith Schwarz
- Michael Sipser