The Limits of Regular Languages

16 March 2021
Assignment 1

Graded and returned

Assignment 2

Being graded

Assignment 3

Due today
Corrections due Thursday

Exam 1

Looming
Try these out! (But not on the exam.)

“Present-day computers are built of transistors and wires, but they could just as well be built, according to the same principles, from valves and water pipes, or from sticks and string. The principles are the essence of what makes a computer compute. One of the most remarkable things about computers is that their essential nature transcends technology.”

W. Daniel Hillis, The Pattern on the Stone
Kleene’s theorem
KLEENE’S THEOREM: Regular expressions and finite automata have equivalent descriptive power.

That is, the languages recognized by DFAs and NFAs and those described by REs are exactly the regular languages.
NFA-ε → DFA

Regular Expression:

\(ab^* (cub)^* \)
Proof

We will prove this set of equivalences by

- ✔ Showing how to construct a DFA from an NFA-ε. *(Already done!)*
- ✔ Showing how to construct an NFA-ε from a regular expression
- ✔ Showing how to construct a regular expression from a finite automaton
Constructing an NFA-ε from a regular expression
CLAIM: If R is a regular expression, then $L(R)$ is a regular language (that is, there’s a DFA/NFA for it).
Cover the six cases in the formal (recursive) definition of REs.

Base cases:

1. $R = a$

2. $R = \varepsilon$

3. $R = \emptyset$
The class of regular languages is closed under the union operation.

For languages represented by R_1 and R_2, take their NFAs N_1 and N_2 and combine them into one new NFA N.

N must accept input if either N_1 or N_2 accepts input.
5 \(R = (R_1 \cdot R_2) \)

The class of regular languages is closed under the concatenation operation.

For languages represented by \(R_1 \) and \(R_2 \), take their NFAs \(N_1 \) and \(N_2 \) and combine them sequentially into one new NFA \(N \).
6 \(R = (R_1)^* \)

The class of regular languages is closed under the star operation.

For a language represented by \(R_1 \), modify \(N_1 \) to accept \((R_1)^*\).
Example

(ab a u a)*
Example

\((ab \cup a)^*\)

That ends the first part of the proof of Theorem 1.54, giving the easier direction of the if and only if condition. Before going on to the other direction, let's consider some examples whereby we use this procedure to convert a regular expression to an NFA.

Example 1.56

We convert the regular expression \((ab \cup a)^*\) to an NFA in a sequence of stages. We build up from the smallest subexpressions to larger subexpressions until we have an NFA for the original expression, as shown in the following diagram.

Note that this procedure generally doesn't give the NFA with the fewest states. In this example, the procedure gives an NFA with eight states, but the smallest equivalent NFA has only two states. Can you find it?

Solution from Sipser
The construction we’re using in this proof is, approximately,

Thompson’s Algorithm.

The “Thompson” is computing pioneer Ken Thompson, a co-inventor of UNIX.
Thompson’s Algorithm is used by actual regular expression matchers to convert regular expressions into finite automata that can be run.

Since the 1970s, grep has converted each regular expression into a finite automaton that it runs to do the search.

$ grep "[DN]FAs are (fun|cool)" notes.txt
This construction is *awesome*.

But we can also prove that the language of a regular expression is a regular language without doing a proof by construction.

How?
This construction is *awesome*.

But we can also prove that the language of a regular expression is a regular language without doing a proof by construction.

How?

Proof by induction! Left as an exercise.
Proof

We will prove this set of equivalences by

- Showing how to construct a DFA from an NFA-ϵ.
- Showing how to construct an NFA-ϵ from a regular expression
- Showing how to construct a regular expression from a finite automaton
Constructing a regular expression from a NFA
CLAIM: If L is a regular language (that is, there’s a DFA/NFA for it), then there is a regular expression for L.
Generalizing NFAs

The diagram illustrates a non-deterministic finite automaton (NFA) with states q_0, q_1, q_2, q_3, q_4, and transitions labeled with symbols from the alphabet Σ. The start state is q_0, and there are transitions labeled with the symbols a, b, ϵ, Σ. The figure emphasizes the process of generalizing NFAs, which involves understanding and manipulating these transitions to define the automaton's behavior.
Generalizing NFAs
Generalizing NFAs

These are all regular expressions!
Generalizing NFAs

Note: NFAs aren’t allowed to have transitions like these. This is just a thought experiment.
Generalizing NFAs
Generalizing NFAs
Generalizing NFAs

\[a \ a \ a \ b \ a \ a \ b \ b \ b \]
Generalizing NFAs

```
a a a b a a b b b
```
Generalizing NFAs

\[\text{start} \rightarrow q_0 \rightarrow ab \cup b \rightarrow q_1 \]

\[q_0 \rightarrow a \rightarrow q_2 \rightarrow a^*?a^* \rightarrow q_3 \rightarrow ab^* \]

Input: a a b a a b b b
Generalizing NFAs

\[
\begin{align*}
\text{start} & \rightarrow q_0 \quad \text{ab } \cup \text{ b} \rightarrow q_1 \\
q_2 & \rightarrow a \\
a*b?a* & \rightarrow q_3 \\
\end{align*}
\]
Generalizing NFAs

\[\text{start} \rightarrow q_0 \xrightarrow{ab \cup b} q_1 \]

\[q_0 \xrightarrow{a} q_2 \xrightarrow{a^*b?a^*} q_3 \xrightarrow{ab^*} q_1 \]

Input strings: \[abaabb \]
Generalizing NFAs

```
start ----> q0
     ^     |
     |     v
     a ----> q2
     |
     v
a*?a* ----> q3

q0 ----> q1
     ^     |
     |     v
     ab u b
```

```
ab * a
```

```
a a a b a a b b b
```
Generalizing NFAs

![Diagram of a generalized NFA]

- **Start state:** q_0
- **States:** q_1, q_2, q_3
- **Transitions:**
 - $q_0 \xrightarrow{a} q_2$
 - $q_0 \xrightarrow{ab \cup b} q_1$
 - $q_2 \xrightarrow{a} q_2$
 - $q_2 \xrightarrow{a^*b?a^*} q_3$
 - $q_1 \xrightarrow{ab^*} q_3$

Languages represented:
- $a^* a b a^* b b^* b$
Generalizing NFAs
Key idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA?
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA?
Is there a simple regular expression for the language of this generalized NFA?
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA?

\[a^+.a^+@a^+.a^+ \]
Key idea 2: If we can convert an NFA into a generalized NFA that looks like this,

```
Key idea 2: If we can convert an NFA into a
generalized NFA that looks like this,

then we can easily read off a regular expression for
the original NFA.
```
From GNFAs to regular expressions

\[R_{00}, R_{01}, R_{11}, \text{ and } R_{10} \text{ are variables for arbitrary regular expressions.} \]
Can we get a clean regular expression from this NFA?
From GNFs to regular expressions

Key idea 3: Transform a GNFA so it looks like this:
From GNFAs to regular expressions

First add new start and accept states
From GNFAs to regular expressions

First add new start and accept states
From GNFAs to regular expressions

First add new start and accept states
From GNFA to regular expressions

Could we eliminate this state from the GNFA?
From GNFAs to regular expressions
From GNFAs to regular expressions

We can use concatenation and Kleene closure to skip this state.
From GNFRAs to regular expressions
From GNFA's to regular expressions

\[
\begin{array}{c}
q_s \\
\varepsilon R_{00} R_{01} \\
R_{00} \\
R_{01} \\
R_{10} \\
\varepsilon R_{11} \\
q_0 \\
q_1 \\
\varepsilon \\
q_f \\
\end{array}
\]
From GNFAs to regular expressions
We can use union to combine these transitions.
Could we eliminate this state from the GNFA?
From GNFAs to regular expressions

Could we eliminate this state from the GNFA?
From GNFAs to regular expressions
From GNFAs to regular expressions

What should we put on this transition?
From GNFAs to regular expressions

\[
\begin{align*}
R_{00}R_{01} (R_{11} \cup R_{10} R_{00}R_{01})^* \varepsilon
\end{align*}
\]
From GNFAs to regular expressions

\[R_{00}R_{01} (R_{11} \cup R_{10}R_{00}R_{01})^* \varepsilon \]
From GNFAs to regular expressions

\[R_{00}^* R_{01} (R_{11} \cup R_{10} R_{00}^* R_{01})^* \varepsilon \]
From GNFAs to regular expressions

\(R_{00}^* R_{01} (R_{11} \cup R_{10} R_{00}^* R_{01})^* \)
From GNFAs to regular expressions

\[R_{00}^* R_{01} (R_{11} \cup R_{10} R_{00}^* R_{01})^* \]
From GNFAs to regular expressions

Before:

- Start: q_0
- Transition: R_{00}
- Transition: R_{10}

After:

- Start: q_s
- Transition: $R_{00}^* R_{01} (R_{11} \cup R_{10} R_{00}^* R_{01})^*$
- Transition: R_{00}
- Transition: R_{11}
- Transition: R_{01}
- Transition: R_{10}
The state-elimination algorithm

1 Start with an NFA M for the language L, which we’ll use as a generalized NFA (GNFA).

2 Add a new start state q_s and accept state q_f to M.
 - Add an ϵ-transition from q_s to the old start state of M.
 - Add ϵ-transitions from each accepting state of M to q_f, then mark them as not accepting.

3 Repeatedly remove states other than q_s and q_f from the NFA by “shortcutting” them until only q_s and q_f remain.

4 The transition from q_s to q_f is now a regular expression equivalent to the original NFA.
Eliminating a state

To eliminate a state q_{rip} from the automaton, do the following for each pair of states q_i and q_j, where there’s a transition from q_i into q_{rip} and a transition from q_{rip} into q_j:

Let R_{in} be the regex. on the transition from q_i to q_{rip}.
Let R_{out} be the regex. on the transition from q_{rip} to q_j.
If there is a regular expression R_{stay} on a transition from q_{rip} to itself,

Add a new transition from q_i to q_j labeled ($(R_{\text{in}})(R_{\text{stay}})^*(R_{\text{out}})$).
Otherwise,

Add a new transition from q_i to q_j labeled ($(R_{\text{in}})(R_{\text{out}})$).

If a pair of states has multiple transitions between them labeled R_1, R_2, \ldots, R_k, replace them with a single transition labeled $R_1 \cup R_2 \cup \cdots \cup R_k$.
Example conversion
Example conversion

Add new start and end state
Example conversion

Add new start and end state

Remove state 2
Example conversion

Add new start and end state

Remove state 2
Example conversion

Add new start and end state

Remove state 2
Example conversion

Add new start and end state

Remove state 2
Example conversion

1. **Add new start and end state**
 - Remove state 2
 - Remove state 1

2. **Remove state 1 and 2**
Example conversion

Add new start and end state

Remove state 2

Remove state 1
Example conversion

Add new start and end state

Remove state 2

Remove state 1
Example conversion

Add new start and end state

Remove state 2

Remove state 1
Exercise
Step 1: Modify to create a unique start and end state:
Step 2: Eliminate state q_0.
Step 2: Eliminate state q_0.

Merge the two edges going from q_2 to q_1.
Step 3: Eliminate state q_2.

\[S \xrightarrow{a^*b} q_1 \xrightarrow{a} F \]

\[a(aa^*b \cup b) \]
Step 3: Eliminate state q_2.

\[b \cup a(aa^*b \cup b) \]

\[\epsilon \cup a \]

Merge again!
Step 4: Eliminate state q_1.

$\mathcal{N} = (S, \Sigma, \delta, S, F)$

$\delta: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S$

$\delta = \{
\begin{align*}
S &\rightarrow \{S\} \quad \text{on } a * b \\
S &\rightarrow \{F\} \quad \text{on } \varepsilon \\
F &\rightarrow \{F\} \quad \text{on } (b \cup a (aa * b \cup b)) * (\varepsilon \cup a)
\end{align*} \}$
Step 4: Eliminate state q_1.

\[a^*b \ (b \cup a(aa^*b \cup b))^* \ (\varepsilon \cup a) \]
Proof

We will prove this set of equivalences by

- Showing how to construct a DFA from an NFA-ϵ.
- Showing how to construct an NFA-ϵ from a regular expression
- Showing how to construct a regular expression from a finite automaton
The regular languages are recognized by DFAs, NFAs, and REs.
The following are all equivalent:

L is a regular language.

There is a DFA D such that $L(D) = L$.

There is an NFA N such that $L(N) = L$.

There is a regular expression R such that $L(R) = L$.
Why this matters

The equivalence of regular expressions and finite automata has *practical* relevance.

Tools like *grep* and *flex* that use regular expressions capture all the power available via DFAs and NFAs.

This is also hugely significant *theoretically*:

The regular languages can be assembled “from scratch” using a small number of operations!
Beyond the valley of the regular languages
DFAs correspond to computers with *finite memory*.

The equivalence of DFAs and NFAs tells us that given finite memory, nondeterminism doesn’t increase computational power.

(Though it might save on memory.)

The equivalence of DFAs and regular expressions tells us that all problems solvable by finite computers can be assembled out of smaller building blocks.
Is every language regular?
To prove a language is regular, we can construct a DFA, NFA, or RE to recognize it.

Or directly use known closure properties.
To prove a language is not regular, we need to show that it’s impossible to construct a DFA, NFA, or regular expression for it.

This kind of argument is challenging – how can we show that we wouldn’t be able to devise a finite automaton for it if we tried harder?
Proof strategy: *Infinite states*
A simple language

Let $\Sigma = \{a, b\}$ and consider this language:

$$L = \{a^ib^i \mid i \in \mathbb{N}_0\}$$

L is the language of all strings of i as followed by i bs:

$$\{\varepsilon, ab, aabb, aaabbb, \ldots\}$$

Is this language regular?
How many states are needed to recognize \(\{a^i b^i\} \)?
This language is not regular!

Intuitive explanation:

Imagine a finite automaton to accept this language. When any DFA for \(L \) is run on any two of the strings \(\varepsilon, a, aa, aaa, aaaaa, \) etc., the DFA must end in different states.

Suppose \(a^n \) and \(a^m \) end up in the same state, where \(m \neq n \).

Then \(a^n b^n \) and \(a^m b^n \) will end up in the same state.

The DFA will either accept a string not in the language or reject a string in the language, which it shouldn't be able to do.

We can’t place all these strings into different states; there are only finitely many states!
The intuition for this proof is helpful to think about. However, actually writing one of these proofs becomes difficult for more complicated languages.

We can take the idea of the number of states required for a DFA to recognize a language and develop a powerful proof framework: the Pumping Lemma.
Acknowledgments

This lecture incorporates material from:

Nancy Ide, Vassar College
Keith Schwarz, Stanford University
Michael Sipser, *Introduction to the Theory of Computation*
Jeffrey Ullman, Stanford University