
1/21/20

1

CS241	
 –	
 Analysis	
 of	
 Algorithms	

Spring	
 2020	

•  Prerequisites: CMPU102 and CMPU145.

•  Lectures: Lectures will be held on Tuesdays and Thursdays from

1:30 to 2:45 pm in SP 201.

•  Textbook: Introduction to Algorithms (3rd Edition), by Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Course	
 Web	
 Page	

•  All information about the course will be posted on

the course web page at
https://www.cs.vassar.edu/~cs241

•  Check your e-mail frequently for course

announcements.

Algorithms	

• For the purposes of this class, an algorithm is a
computational procedure that takes some value, or set
of values, as input and produces some value, or set of
values, as output, and eventually terminates.

What is an algorithm?

Sor=ng	
 Problem	

The algorithmic problem known as sorting is defined as
follows:

INPUT: An array A[1…n] of n totally ordered elements {a1, a2,..., an}
OUTPUT: A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′}

 such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′.

Sorting Problem Input?

Sor=ng	
 Problem	
 Input	

Example instances of input for the sorting problem:

 {Mike, Sally, Herbert, Tony, Jill}
 {101, 111111, 1111, 100, 1010, 101010}

Example instances of output for the given instances of
the sorting problem above:

 {Herbert, Jill, Mike, Sally, Tony}
 {100, 101, 1010, 1111, 101010, 111111}

Algorithm	
 Efficiency	

In our analysis, time and space efficiency are both considered
in the limit as the size of the input grows without bound.

The amount of extra space required is currently of less
concern than the running time for many programming
applications, because memory capacity is large (and cheap).
Extra space includes above what is required to store the input
to an algorithm.

We will concentrate mainly on the amount of time an
algorithm uses. But for algorithms with equal running time,
the space used may be of importance.

1/21/20

2

Algorithm	
 Time	
 Efficiency	

Observation: Most algorithms run longer on larger inputs.

We want to investigate an algorithm’s efficiency as a
function of some parameter n indicating the algorithm’s
input size.

Analyzing	
 Algorithms	

Goal: to predict the number of steps executed by an
algorithm in a machine- and language-independent way
using:

1.  the RAM model of computation: Single processor with
sequential instructions (no parallel computation)

2.  asymptotic analysis of worst-case complexity

Measures	
 of	
 Complexity	

What metrics of an algorithm are considered
when comparing algorithm complexity?

Time

Space

Number of messages

Power consumption

How	
 to	
 Measure	
 Algorithm	
 Time?	

1.  Implement algorithm and include a system call to count the

number of milliseconds it takes to run.

2.  count the exact number of times each of the algorithm’s
operations is executed, assuming each particular line takes a
constant amount of time for a data set of size n, and add time of
all lines to get a polynomial expression.

3.  identify the operations (line or loop) that contribute most to the
total running time (usually a statement that begins a loop and one
or more of the lines internal to the loop) and count the number of
times that operation is executed.

 ==> the basic (aka dominant) operation

Analysis	
 Fundamental	

The data structures used to store information and the
algorithms to manipulate the information are generally
intertwined. The efficiency of information manipulation is
often significantly affected by the data structures used.

RAM	
 Model	
 of	
 Computa=on	

Single-processor machine: instructions are executed
sequentially (no concurrent operations.)

The running time T(n) of an algorithm on a particular input
instance of size n is the number of times the basic operation
is executed. Expressed in terms of n, the input size.

To make the notion of an algorithm step as machine-
independent as possible, assume:

Each execution of the ith line takes a constant
amount of time.

1/21/20

3

Flow	
 of	
 Control	

Loops and their recursive counterparts are the composition
of many primitive steps (as you know if you have done any
assembly language programming).

Execution time depends on the number of loop iterations or
recursive calls (a function of the input size).

We will represent the running time of loops (iterative
algorithms) using summations.

Algorithm	
 Efficiency	
 on	
 Different	
 Inputs	

Some algorithms take the same amount of time on all input instances
of a given size, n.

For other algorithms, there are best-case, worst-case, and average-
case input instances that depend on other qualities of the input than
just the input size.

For algorithm A on input of size n:

Worst-case input : The input(s) for which A executes the most
steps, considering all possible inputs of size n.

Best-case input : The input(s) for which A executes the fewest
steps, considering all inputs of size n.

 FindMax(A[1…n])

1.  max = A[1]
2.  for (k = 2; k <=n; k++)
3.  if (A[k] > max)
4.  max = A[k]
5.  return max

For input of comparable, totally ordered set of data:
 [23, 53, 5, 34, 42, 18] è 53

INPUT: An array A of n totally ordered items

OUTPUT: The value of the maximum item in the array

Pseudocode	
 	
 Book	
 Idiosyncrasy	

In our textbook, arrays are usually assumed to be numbered
starting at 1, not 0 as we are all used to.

Take note of whether the algorithms in the book (and those
you write) use 1- or 0-based indexing on arrays. The index
number can be important not only to understand how the
algorithm works, but is often essential in proving algorithm
correctness.

Handy	
 Summa=on	
 Rules	
 	

for	
 Itera=ve	
 Algorithms	

	

	

	

	

	

	
 	
 	
 where	
 l	
 ≤	
 u	
 &	
 l	
 and	
 u	
 are	
 lower	
 and	
 upper	
 integer	
 limits.	

	

	

	

	

	

	
 This	
 type	
 of	
 summa9on	
 usually	
 applies	
 to	
 loops	
 with	
 one	

level	
 of	
 nes9ng	
 (loop	
 inside	
 loop).	

	

€

i
i= 0

n

∑ = i =1+ 2 + ...+ n =
n(n +1)
2i=1

n

∑€

1
i= l

u

∑ = u − l +1

 FindMax(A[1…n])

1.  max = A[1]
2.  for (k = 2; k <=n; k++)
3.  if (A[k] > max)
4.  max = A[k]
5.  return max

INPUT: An array A of n comparable items

OUTPUT: The value of the maximum item in the array

Expressing	
 loops	
 as	
 summa=ons	

 Does this algorithm have variable running time on input arrays with
different contents or orderings of size n ?

 Give the line number of the basic operation. €

1
i= l

u

∑ = u − l +11
i=2

n

∑ = n− 2+1

1/21/20

4

 InsertionSort(A)

1.  for (j = 2 to length[A])
2.  key = A[j]
3.  i = j – 1
4.  while (i > 0 and A[i] > key)
5.  A[i + 1] = A[i]
6.  i = i - 1
7.  A[i + 1] = key

INPUT: An array A of n items {a1, a2,..., an}

OUTPUT: A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′}

 such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′.

The while loop may be executed a different number of times for
different values of j, so let tj be the number of times line 4 is
executed for each value of j.

Sor=ng	
 Algorithms	
 Analysis	
 of	
 Inser=onSort	
 	

 InsertionSort(A)
1. for j = 2 to length[A]
2. key = A[j]
3. i = j – 1
4. while i > 0 and A[i] > key
5. A[i + 1] = A[i]
6. i = i – 1
7. A[i + 1] = key

•  For insertion sort,
does the running
time vary for different
input instances?

If so, give an
instance of best-case
and worst-case
inputs.

General	
 Plan	
 for	
 Analyzing	
 Time	
 Efficiency	
 of	

Non-­‐recursive	
 Algorithms	

1.  Decide	
 on	
 a	
 parameter	
 indica9ng	
 input	
 size.	

2.  Iden9fy	
 the	
 algorithm’s	
 basic	
 opera9on.	

3.  If	
 the	
 number	
 of	
 9mes	
 the	
 basic	
 opera9on	
 is	
 executed	

depends	
 only	
 on	
 the	
 size	
 of	
 the	
 input,	
 give	
 worst-­‐case	

efficiency.	
 If	
 this	
 number	
 also	
 depends	
 on	
 some	

addi9onal	
 property,	
 the	
 worst-­‐case	
 and	
 best-­‐case	

efficiencies	
 should	
 be	
 given	
 separately.	

4.  If	
 possible,	
 set	
 up	
 a	
 sum	
 expressing	
 the	
 number	
 of	
 9mes	

the	
 basic	
 opera9on	
 is	
 executed.	

5.  Use	
 standard	
 rules	
 of	
 sum	
 manipula9on	
 to	
 find	
 a	

closed-­‐form	
 solu9on	
 for	
 the	
 count	
 of	
 opera9ons.	
 	

 SelectionSort(A)

1.  for (i = 1 to n - 1)
2.  min = i
3.  for (j = i+1 to n)
4.  if (A[j] < A[min])
5.  min = j
6.  swap (A[i], A[min])

INPUT: An array A of n items {a1, a2,..., an}

OUTPUT: A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′}

 such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′.

Sor=ng	
 Algorithm	
 	
 	

