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CS241	
  –	
  Analysis	
  of	
  Algorithms	
  
Spring	
  2020	
  

•  Prerequisites:  CMPU102 and CMPU145.  
 
•  Lectures:  Lectures will be held on Tuesdays and Thursdays from 

1:30 to 2:45 pm in SP 201.   
 

•  Textbook:  Introduction to Algorithms (3rd Edition), by Thomas H. 
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 

   
 

Course	
  Web	
  Page	
  
•  All information about the course will be posted on 

the course web page at  
https://www.cs.vassar.edu/~cs241 

 
•  Check your e-mail frequently for course 

announcements. 
 

Algorithms	
  

• For the purposes of this class, an algorithm is a 
computational procedure that takes some value, or set 
of values, as input and produces some value, or set of 
values, as output, and eventually terminates. 

 
 

What is an algorithm? 

Sor=ng	
  Problem	
  
The algorithmic problem known as sorting is defined as 
follows: 
 
INPUT:      An array A[1…n] of n totally ordered elements {a1, a2,..., an}
OUTPUT:  A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′} 

     such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′. 
 

Sorting Problem Input? 

Sor=ng	
  Problem	
  Input	
  
Example instances of input for the sorting problem: 

 {Mike, Sally, Herbert, Tony, Jill}     
 {101, 111111, 1111, 100, 1010, 101010} 

 
Example instances of output for the given instances of 
the sorting problem above: 

 {Herbert, Jill, Mike, Sally, Tony}     
 {100, 101, 1010, 1111, 101010, 111111} 

 
 
 
 

Algorithm	
  Efficiency	
  
In our analysis, time and space efficiency are both considered 
in the limit as the size of the input grows without bound.   
 
The amount of extra space required is currently of less 
concern than the running time for many programming 
applications, because memory capacity is large (and cheap). 
Extra space includes above what is required to store the input 
to an algorithm.  
 
We will concentrate mainly on the amount of time an 
algorithm uses.  But for algorithms with equal running time, 
the space used may be of importance. 
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Algorithm	
  Time	
  Efficiency	
  
Observation:  Most algorithms run longer on larger inputs.   
 

We want to investigate an algorithm’s efficiency as a 
function of some parameter n indicating the algorithm’s 
input size. 

Analyzing	
  Algorithms	
  
Goal:  to predict the number of steps executed by an 
algorithm in a machine- and language-independent way 
using: 
 
 

1.  the RAM model of computation: Single processor with 
sequential instructions (no parallel computation) 

 
 

2.  asymptotic analysis of worst-case complexity  
  

Measures	
  of	
  Complexity	
  
What metrics of an algorithm are considered 
when comparing algorithm complexity? 

Time

Space

Number of messages

Power consumption

How	
  to	
  Measure	
  Algorithm	
  Time?	
  
1.  Implement algorithm and include a system call to count the 

number of milliseconds it takes to run. 

2.  count the exact number of times each of the algorithm’s 
operations is executed, assuming each particular line takes a 
constant amount of time for a data set of size n, and add time of 
all lines to get a polynomial expression.   
 

3.  identify the operations (line or loop) that contribute most to the 
total running time (usually a statement that begins a loop and one 
or more of the lines internal to the loop) and count the number of 
times that operation is executed.  

             
 ==> the basic (aka dominant) operation  

 

Analysis	
  Fundamental	
  
The data structures used to store information and the 
algorithms to manipulate the information are generally 
intertwined.  The efficiency of information manipulation is 
often significantly affected by the data structures used.  

RAM	
  Model	
  of	
  Computa=on	
  
Single-processor machine: instructions are executed 
sequentially (no concurrent operations.)  
 
The running time T(n) of an algorithm on a particular input 
instance of size n is the number of times the basic operation 
is executed.  Expressed in terms of n, the input size.  
 
To make the notion of an algorithm step as machine-
independent as possible, assume: 
 

Each execution of the ith line takes a constant 
amount of time. 
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Flow	
  of	
  Control	
  
Loops and their recursive counterparts are the composition 
of many primitive steps (as you know if you have done any 
assembly language programming).  
 
Execution time depends on the number of loop iterations or 
recursive calls (a function of the input size).  
 
We will represent the running time of loops (iterative 
algorithms) using summations.  

Algorithm	
  Efficiency	
  on	
  Different	
  Inputs	
  
Some algorithms take the same amount of time on all input instances 
of a given size, n.   
 
For other algorithms, there are best-case, worst-case, and average-
case input instances that depend on other qualities of the input than 
just the input size.   
 
For algorithm A on input of size n:  

 

Worst-case input :  The input(s) for which A executes the most 
steps, considering all possible inputs of size n.   
 

Best-case input :  The input(s) for which A executes the fewest 
steps, considering all inputs of size n. 

 
 

 

       FindMax(A[1…n]) 
 
 
 
 

1.   max = A[1] 
2.   for ( k = 2;  k <=n; k++) 
3.        if (A[k] > max) 
4.             max = A[k]  
5.   return max 

 
 

For input of comparable, totally ordered set of data: 
                 [23, 53, 5, 34, 42, 18]  è 53
 

INPUT:      An array A of n totally ordered items 
 
OUTPUT:  The value of the maximum item in the array  

Pseudocode	
  	
   Book	
  Idiosyncrasy	
  
In our textbook, arrays are usually assumed to be numbered 
starting at 1, not 0 as we are all used to. 
 
Take note of whether the algorithms in the book (and those 
you write) use 1- or 0-based indexing on arrays. The index 
number can be important not only to understand how the 
algorithm works, but is often essential in proving algorithm 
correctness. 
 

Handy	
  Summa=on	
  Rules	
  	
  
for	
  Itera=ve	
  Algorithms	
  

	
  
	
  
	
  
	
  
	
  

	
  	
  	
  where	
  l	
  ≤	
  u	
  &	
  l	
  and	
  u	
  are	
  lower	
  and	
  upper	
  integer	
  limits.	
  
	
  

	
  

	
  

	
  

	
  

	
  This	
  type	
  of	
  summa9on	
  usually	
  applies	
  to	
  loops	
  with	
  one	
  
level	
  of	
  nes9ng	
  (loop	
  inside	
  loop).	
  

	
  
€ 

i
i= 0

n

∑ = i =1+ 2 + ...+ n =
n(n +1)
2i=1

n

∑€ 

1
i= l

u

∑ = u − l +1

 

       FindMax(A[1…n]) 
 
 
 
 

1.   max = A[1] 
2.   for ( k = 2;  k <=n; k++ ) 
3.        if (A[k] > max) 
4.             max = A[k]  
5.   return max 

INPUT:      An array A of n comparable items 
 
OUTPUT:  The value of the maximum item in the array  

Expressing	
  loops	
  as	
  summa=ons	
  

 Does this algorithm have variable running time on input arrays with 
different contents or orderings of size n ? 

 

 Give the line number of the basic operation.   € 

1
i= l

u

∑ = u − l +11
i=2

n

∑ = n− 2+1



1/21/20

4

 

       InsertionSort(A) 
 
 
 
 
 

1.    for ( j  = 2 to length[A] ) 
2.         key = A[j] 
3.          i = j – 1 
4.          while ( i > 0 and A[i] > key) 
5.                 A[i + 1] = A[i] 
6.             i = i - 1 
7.          A[i + 1] =  key 

INPUT:      An array A of n items {a1, a2,..., an} 
 
OUTPUT:  A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′} 

    such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′. 

The while loop may be executed a different number of times for 
different values of j, so let tj be the number of times line 4 is 
executed for each value of j. 

Sor=ng	
  Algorithms	
   Analysis	
  of	
  Inser=onSort	
  	
  
 

         InsertionSort(A)       
1. for j  = 2 to length[A] 
2.       key = A[j] 
3.       i = j – 1 
4.       while i > 0 and A[i] > key 
5.             A[i + 1] = A[i] 
6.        i = i – 1 
7.       A[i + 1] =  key 

•  For insertion sort, 
does the running 
time vary for different 
input instances? 
 
 
 
If so, give an 
instance of best-case 
and worst-case 
inputs. 

General	
  Plan	
  for	
  Analyzing	
  Time	
  Efficiency	
  of	
  
Non-­‐recursive	
  Algorithms	
  

1.  Decide	
  on	
  a	
  parameter	
  indica9ng	
  input	
  size.	
  
2.  Iden9fy	
  the	
  algorithm’s	
  basic	
  opera9on.	
  
3.  If	
  the	
  number	
  of	
  9mes	
  the	
  basic	
  opera9on	
  is	
  executed	
  

depends	
  only	
  on	
  the	
  size	
  of	
  the	
  input,	
  give	
  worst-­‐case	
  
efficiency.	
  If	
  this	
  number	
  also	
  depends	
  on	
  some	
  
addi9onal	
  property,	
  the	
  worst-­‐case	
  and	
  best-­‐case	
  
efficiencies	
  should	
  be	
  given	
  separately.	
  

4.  If	
  possible,	
  set	
  up	
  a	
  sum	
  expressing	
  the	
  number	
  of	
  9mes	
  
the	
  basic	
  opera9on	
  is	
  executed.	
  

5.  Use	
  standard	
  rules	
  of	
  sum	
  manipula9on	
  to	
  find	
  a	
  
closed-­‐form	
  solu9on	
  for	
  the	
  count	
  of	
  opera9ons.	
  	
  

 

       SelectionSort(A) 
 
 
 
 

1.    for ( i  = 1 to n - 1 ) 
2.        min = i 
3.        for ( j = i+1 to n) 
4.            if (A[j] < A[min]) 
5.                min = j 
6.        swap (A[i], A[min]) 

INPUT:      An array A of n items {a1, a2,..., an} 
 
OUTPUT:  A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′} 

    such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′. 

Sor=ng	
  Algorithm	
  	
  	
  


