Asymptotic Analysis-Ch. 3

Main idea: Running time is measured in the limit as the input size n
grows to infinity.

» Calculate algorithm running time in terms of its rate of growth with
increasing problem size. To make this task easier, we can
- identify terms of highest order and ignore lower order terms
- disregard multiplicative constants

Saying an algorithm has running time 0(n2) says that the order of
growth of the running time is in the set of functions whose running time
iS n2, a quadratic function of n

Asymptotic Analysis

e Names for classes of algorithms:

constant
logarithmic
polylogarithmic
linear
linearithmic
quadratic

cubic
polynomial
exponential

6(n°) = 6(1)

9(lgn) Growth
0(lgkn), k = 1 Rate
0(n) Increasing
0(nign)

0(n2)

0(n3)

O(nk), k=1

B(an),a>1

Asymptotic Analysis

Example: an algorithm with running time of order n? will "eventually”

(i.e., for sufficiently large n) run slower than one with running time of

order n, which in turn will eventually run slower than one with running
time of order Ign.

Asymptotic analysis in terms of "Big Oh", "Theta", and "Big Omega" are
the tools we will use to make these notions precise.

Note: Our conclusions will only be valid "in the limit" or "asymptotically”.
That is, they may not hold true for small values of n. And we really don't
care about small values of n.

"Big Oh" - Upper Bounding Running Time

Definition: f(n) € O(g(n)) if there exist constants ¢ > 0 and
Ny, 2 1 such that

f(n) = cg(n) forall n=n,.

Intuition:
e f(n) € O(g(n)) means f(n) is “of order at most”, or “less than or

equal to” g(n) when we ignore small values of n and constants

e f(n) is eventually trapped below (or = to) some constant multiple
of g(n)

e some constant multiple of g(n) is an upper bound for f(n)
(for large enough n)

"Big Oh" - Upper Bounding Running Time

Alternate Definition:

O(g(n)) = { f(n) : there exist positive constants c and n, s.t.
0 <f(n)=cg(n)forallnzn,}

Intuition:
e f(n) € O(g(n)) means f(n) is “of order at most”, or “less than or

equal to” g(n) when we ignore small values of n and constants
e f(n) is eventually trapped below (or = to) some constant multiple
of g(n)

e some constant multiple of g(n) is an upper bound for f(n)
(for large enough n)

(note: ny, must be at least 1)

Example: (Ig n)? is O(n)

16 gln) =n

S
Il

(Ig n)?2 <nforall n>16, so (Ig n)? is O(n)

Example:

INPUT:
An array A of n numbers

{a,, a,,..., a,}

OUTPUT:
A permutation of input array
{a,, a,,..., a,'} such that
a,'sa,=..<a,.

InsertionSort

InsertionSort (A)

for j = 2 to A.length
key = A[]]
i=3-1

while 1>0 and A[i]>key
A[i+1l] = A[1i]
i=1i-1

A[i+l] = key

S oy o WD R

Time for execution on input array of length n:

o best-case: b(n) = 5n -4

o worst-case: w(n) = 3n%/2 + 11n/2 - 4

Insertion Sort - Time Complexity

Time complexities for insertion sort are:
o best-case: b(n)=5n-4
o worst-case: w(n) =3n%/2 +7n/2 - 4

Questions:
1. isb(n) =0(n) ? Yes(5n-4<6n)forallnz0

2. isw(n)=0(n) ? No (3n%/2+7n/2-423n)forallnz1
3. isw(n) =0(n?) ? Yes (3n2/2+7n/2-4 <4n2)foralln=0
4. isw(n) =0(n3) ? Yes (3n%2+7n/2-4<2n3 forallnz=2

Confused?

Basic idea: ignore constant factors and
lower-order terms

¢ 617n3 +277x2+ 720x + 7 € 0O(?)
* 200 € O(?)
e (n (n+1))/2 € 6(?)

Consider
f.(n)=5n*+24n +6

We claim that
f,(n) = O(n3)

Let c = 6 and ny = 10. Then
5n3+24n + 6 < 6n3

for every n 2 10

|f
f.(n)=5n*+24n +6
we have seen that

f,(n) = O(n°)

but f,(n) is not in O(n?), because no
positive value for c or n, works.

"Big Omega" - Lower Bounding Running Time

Definition: f(n) € Q(g(n)) if there exist constants ¢ > 0 and
Ny, 2 1 such that

f(n) 2 cg(n) forall n=n,.

Intuition:
e f(n) € Q(g(n)) means f(n) is “of order at least” or “greater than or

equal to” g(n) when we ignore small values of n .

e f(n) is eventually trapped above (or = to) some constant multiple
of g(n)

e some constant multiple of g(n) is a lower bound for f(n)
(for large enough n)

"Big Omega" - Lower Bounding Running Time

Alternate Definition:

Q(g(n)) = { f(n) : there exist positive constants ¢ and n, s.t.
0 <cg(n)=f(n)forallnzn,}

Intuition:
e f(n) € Q(g(n)) means f(n) is “of order at least” or “greater than or

equal to” g(n) when we ignore small values of n .

e f(n) is eventually trapped above (or = to) some constant multiple
of g(n)

e some constant multiple of g(n) is a lower bound for f(n)
(for large enough n)

(note: ny, must be at least 1)

Insertion Sort - Time Complexity

Time complexities for insertion sort are:
o0 best-case: b(n) =56n-4
o worst-case: w(n) =3n%/2 +7n/2 - 4

Questions:
1. isb(n)=£(n)? Yes.. (5n-422n)foralln,=2

2. isw(n)=8(n)? VYes..(3n?/2+7n/2-423n)foralln,>1
3. isw(n)=€2(n?)? Yes.. (3n*/2+7n/2-42 n?)foralln,21

4. isw(n)=£(n°)? No...(3n°/2+7n/2-4<n3)foralln,>3

"Theta" - Tightly Bounding Running Time

B(g(n)) = { f(n) : there exist positive constants c,, ¢c,, and n,
such that
0 <c,g(n) =f(n) =c,g(n)foralln=n,}

"Theta" - Tightly Bounding Running Time

Definition: f(n) € 6(g(n)) if there exist constants c,, ¢, >0
and n, > 0 such that

c.g(n) = f(n) =c,g(n) forall nz=n,.

Useful way to show "Theta" relationships:
O Show both a "Big Oh" and "Big Omega" relationship.

Insertion Sort - Time Complexity

Time complexities for insertion sort are:
o0 best-case: b(n) =56n-4
o worst-case: w(n) =3n%/2 +7n/2 - 4

Questions:
1. isb(n)=06(n)? Yes because b(n) = O(n) and £2(n)

2. isw(n)=06(n) ? No because w(n) = O(n)
3. isw(n) = 6(n?) ? Yes because w(n) = O(n?) and §2(n?)
4

. isw(n) = 6(n?)? No because w(n) = (n3)

Asymptotic Analysis

e (Classifying algorithms is generally done in terms of worst-
case running time:

— O (f(n)): Big Oh — asymptotic upper bound.
— Q (f(n)): Big Omega — asymptotic /ower bound
— 0 (f(n)): Theta — asymptotic tight bound

"Little Oh™ — Strict upper bound

Definition: f(n) € o(g(n)) if for every c > 0, there exists
some n, 2 1 such that for all n = n,, f(n) < cg(n).

Intuition:
e f(n) € o(g(n)) means f(n) is "strictly less than" any constant multiple
of g(n) when we ignore small values of n

* f(n) is trapped below any constant multiple of g(n) for large enough n

"Little Omega" — Strict Lower Bound

Definition: f(n) € w(g(n)) if for every ¢ > 0, there exists
some ny 2 1 such that for all n = ny, f(n) > cg(n).

Intuition:
e f(n) € w(g(n)) means f(n) is "strictly greater than" any constant
multiple of g(n) when we ignore small values of n

* f(n) is trapped above any constant multiple of g(n) for large enough n

Using Limits to Determine Complexity

Showing "Little Oh" and "Little Omega" relationships:

f(n) € o(g(n)) iff lim f(n)/g(n)=20

nN—o

f(n) € o(g(n)) iff lim f(n)/g(n)=co

N—00

Showing Theta relationships

f(n) € B(g(n)) iff lim f(n)/g(n)=c>0

N—00

Analysis of PrefixAverages-vl

1. Create an array A such that length[A] = length[X] = n

2.5=0
3. for(j=1tolength[X])
4. s =s + X[j] L
5. Aljl=s/]j El=l’l—1+1=l’l
6. return A :
=1
1. T(n)= 06(n)

2. Are there best- and worst-case inputs? No

Analysis of PrefixAverages-v2

1. Create an array A such that length[A] = n
2. for(j=1ton)

3. a=0

4. for(i=1to)) (n*+n)
5. 2 = a + X]i] 21211 2’ —l+l= EJ‘

6. Aljl=a/]j "

/. return A

1.T(n)= 6(n?)

2. Are there best and worst case inputs? NoO

Basic asymptotic efficiency classes

Class Name Comments
1 Constant Algorithm ignores input
(i.e., cant even scan or print input)
Ign Logarithmic Cuts problem size by constant
fraction on each iteration
N Linear Algorithm scans its input (at least);
one or more non-nested loops
nign Linearithmic Some divide and conquer algorithms;
best sorting time.
n2 Quadratic Loop inside loop = “nested loop”
n3 Cubic Loop inside nested loop
n Exponential Algorithm generates all

subsets of n-element set

n! Factorial Algorithm generates all
permutations of n-element set

f)

g)

Handy Asymptotic Facts

If T(n) is a polynomial function of degree k, then T(n) = O(nk).
logkn = (log n)k = O(n)

n° = o(a") for any constantsa>1, b > 0.

n!=o(n")

n!l=w(2")

lg(n!) = O(nlgn)

n* = 0(n**¢), a"=0(a + &)"

Oddball Running Time

* Iterated logarithm function (Ig"n):

— the number of times the log function must be
iteratively applied before the result is less
than or equal to 1

- "log star of n"
- Very slow growing, e.g. 1g"(2%°°3%) = 5

(and 29>°3% s much larger than the number of
atoms in the observable universe!!)

eg: lg*2=1
lg*4 = 2
lg*16= 3

Ig*65536 =4

