1/29/20

Analysis of Divide-and-Conquer Algorithms
The divide-and-conquer paradigm (Ch 2.3)

the problem into a number of subproblems
. the subproblems by solving them
the subproblem solutions to get the final solution

add all these to get recurrence relation for T(n)

Example: Merge-Sort
. the n-element input sequence to be sorted into two
n/2-element subsequences.
the subproblems recursively using merge sort.
the resulting two sorted n/2-element sequences by
merging.

Analyzing Divide-and-Conquer Algorithms

A recursive algorithm can often be described by a recurrence equation that
describes the overall runtime on a problem of size n in terms of the runtime
on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

Tin) = 1 ifnsc
- at(n/b) + D(n) + C(n) otherwise

where

e a = number of subproblems we divide the problem into

* n/b = size of the subproblems (in terms of n)

* D(n) = time to divide the size n problem into subproblems

e C(n) = time to combine the subproblem solutions to get the

answer for the problem of size n

Merge-Sort (A,p,r) Merge (A,p,q.r)
1.ifp<r the;x 1. n; = q-pt+l; n, = r-q;
2. = | (p+r) /2

q = | (p+r) /2] 2. Create arrays
3 Merge-Sort(A,p,q) L[1 n,;+1] and
4. Merge-Sort(A,q+l,r) R[l.) 'n1+1]
5 Merge (A,p,q,r) R

3. for i =1 to n;
4. L[i] = A[p+i-1]
Initial call: 5. for i = 1 to n,
Merge-sort(A,1,length(A)) 6. R[i]= A[qti]
7. L[n;+1] = R[n,+1] = o
The Merge subroutine takes linear 8. iz =1
time to merge n elements that are s A=3=
divided into two sorted arrays of n/2 9. for k =p tor
elements each. 10. if L[i] = R[j]
11. A[k] = L[i]
12. i= i+l
13. else A[k] = R[]]
14. j = j+1

Analyzing Merge-Sort

[2 8 1 5 4 3 7 6 bm=61)

Divide
(Ign + 1 levels)

Why are there Ign + 1 levels?

How long does it take to find the midpoint of an array?

Analyzing Merge-Sort

(1 2 3 4 5 6 7 8 cm=6m

[1 2 5 8][3 4 6 7

Merge
(Ign + 1 levels)

2 sl[1 s|[3 4] [6 7
2] [8] [1] [s] [4] [3][7] [6]

Tin) = (1) ifn=1
2T(n/2) +6(n) otherwise

Recurrence for worst-case running time for Merge-Sort

Analyzing Merge-Sort

Tin) = (1) ifn=1
2T(n/2) + 6(n) otherwise

Recurrence for worst-case running time for Merge-Sort

at(n/b) + D(n) + C(n)

L] 2 (two subproblems)
¢ n/b =n/2 (each subproblem has size approx n/2)
)

« D(n) =0(1) (just compute midpoint of array)

o C(n) =0(n) (merging can be done by scanning sorted subarrays)

1/29/20

Recurrence Tree for Merge-Sort

cn cn
| cn/2 cn/2 cn
h =lgn + 1 levels

cn/4 cn/4 cn/4 CN/4 e CN
SN NN
-

c C e CN

cnlgn +cn

c ifn=1
T(n) =
2T(n/2) +cn otherwise

Recurrence tree for Merge-Sort

Review of Logarithms

A logarithm is an inverse exponential function. Saying b = y is equivalent
to saying log,y = x.

* notation convention for logarithms:
Ign =log,n (binary logarithm -- note, no subscript, just Ig)
Inn =log.n (natural logarithm)

o properties of logarithms:
logy(xy) = logyx + logyy
log, (x/y) = logyX - logpy
logyx® = alog,x
logya= log,a/log,b
a=bl92 (e.g., n=29"=nle?)

Log functions grow very slowly as n
grows without bound.

General Plan for calculating running time
of recursive algorithms

1. Decide on a parameter indicating input size.

2. Setup a recurrence relation, with the appropriate base
cases.

3. Solve the recurrence or otherwise ascertain the order
of growth using, e.g. backward substitution, the master
method, a recursion tree, or a good guess.

Solving Recurrences

I will cover the first 2 techniques to solve recurrences. The third method is
covered in the book (as is solving with a good guess).

1. Backward Substitution: involves substituting next step into equation until
you see a pattern, converting the pattern to a summation, and solving
the summation.

2. Apply the "Master Theorem": If the recurrence has the form

T(n) = aT(n/b) + f(n)
then there is a formula that can (often) be applied, given in § 4-5.

3. Apply the recursion tree method from § 4-4.

To make the solutions simpler, we will
+ assume base cases are constant time, i.e., T(n) = 6(1) for small enough n.

Solving recurrence for n!

Algorithm F(n)
Input: a positive integer n
Output: n!
if n=1
return 1
else
return F(n-1) * n

HwN =

We can solve this recurrence (ie, find an expression of the running time
T(n) that is not given in terms of itself) using a method known as
backward substitution.

T(n) for the factorial problem

For recursive algorithms such as computing the factorial of n, we get an
expression like the following:

1 ifn=0
T(n) = { T(n-1) + D(n) + C(n)

where

* n-1 = size of the subproblem (in terms of n)

* D(n) = time to divide the size n problem into subproblems

* (C(n) = time to combine the subproblem solutions to get the
answer for the problem of size n

1/29/20

Solving recurrence for n!

Algorithm F(n)

S T(n)=T(n-1)+1 (substT(n-1)=[T(n-2) +1])
Input: a positive integer n

=[T(n-2)+1]+1=T(n-2)+2

Output: n! (‘subst T(n-2) = [T(n-3) + 1])
1. ifn=1 =[T(n-3) + 1] + 2 =T(n-3) + 3...
2. return 1
3. else =T(n-i)+i=..=T(n-n)+n=0+n

4. return F(n-1) * n Therefore, this algorithm has linear running

time.

T(n)=T(n-1) +1
T1)=1

We can solve this recurrence (ie, find an expression of the running time
T(n) that is not given in terms of itself) using a method known as
backward substitution.

Solving Recurrences: Back Substitution
Example: T(n) = 2T(n/2) + n (look familiar?)

T(n) 2T(n/2) + n

2[2T(n/4) + n/2] + n /* expand T(n/2) */

4T(n/4)+n+n /* simplify */

4[2T(n/8) + n/4] + n+n /*expand T(n/4) */

8T(n/8)+n+n+n /* simplify */

29"T(n/2'") + ...+ n+n+n /*after Ign iterations */

= 29 + nign
= cn+nlgn /¥ 29" =n'% = nx/

= 6(nign)

Solving Recurrences: Back Substitution
Example: T(n) = 4T(n/2) + n

T(n) 4T(n/2) + n

4[4T(n/4) + n/2] + n /* expand T(n/2) */

16T(n/4) + 2n +n /¥ simplify 16 = 42%/

16[4T(n/8) + n/4] + 2n +n /* expand T(n/4) */

64T(n/8) + 4n + 2n + n /* simplify 64 = 43/

497T(n/29") + ... +4n +2n + n /* after Ign iterations */

lent

c49" +n 22* =2°+2'+..+2%" [* convert to summation */
i

7% 49 = gl = 2 */

cn'%* 4+ n (29"- 1)
% 2l = 92 = */

cn? +n(n-1)
0(n*

Solving Recurrences: Back Substitution

Example: T(n) = T(n/2) + 1

Tn) = T(n/2)+1
= [T(n/4)+1]1+1 /* expand T(n/2) */
= T(n/4)+2 /* simplify */
= [T(n/8) +1]+2 /* expand T(n/4) */
= T(n/8)+3 /* simplify */
= T(n/2%) + Ign /¥ 2" =n%=n ¥
= c+lgn
= 0(gn) Which well-known algorithm

has this running time??

Solving Recurrences: Master Method (§4.5)

The master method provides a 'cookbook' method for
solving recurrences where n is divided repeatedly by a
constant. This is the method we will use most often for
solving recurrences of the form

T(n) = aT(n/b) + f(n)

Where a is the number of sub-problems, n/b is the size of
each subproblem, and f(n) is the time to divide or combine
data.

Solving Recurrences: Master Method (§4.5)

Master Theorem: Leta > 1and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + f(n)
Where a is the number of sub-problems, n/b is the size of each sub-
problem, and f(n) is the time to divide or combine data.
Then, T(n) can be bounded asymptotically as follows:
1. T(n) = B(N°?) if f(n) < n°%** for some constant ¢ > 0
2. T(n) = B(n°*?Ign) if f(n) = n'°%°

3. T(n) = 6f(n) if f(n) = n°%*¢ for some constant & > 0

1/29/20

Alternate Version of Master Method

Leta =1, b > 1, k=0 be constants, let p be a real number, and let
T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + 6(n*log"n)
Then, T(n) can be bounded asymptotically as follows:
1. Ifa>Dbk, then T(n)=6(n'%?)
2. Ifa=Dbk then
a)lf p>-1,then T(n) = 6(n°%?log” 'n)

b) If p=-1,then T(n) = 6(n"%loglogn)
c)If p<-1,then T(n)=06(n"%)

3. Ifa<bk then
a)lf p20,then T(n)=06(n"log’n)
b)If p<0,then T(n)=6(n")

Alternate Version of Master Method

Leta 21, b > 1, k>0 be constants, let p be a real number, and let
T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + 6(n*log®n)

Then, T(n) can be bounded asymptotically as follows:

1. Ifa>b, thenT(n) = 6(n'"?)
2. Ifa=b thenT(n)=B(n"%log""n)

3. Ifa<b¥ thenT(n)=6(n"log’n)

Solving Recurrences: Master Method

Example: T(n)=9T(n/3)+n

Example: T(n)=T(n/2) +1

Solving Recurrences: Master Method

Example: T(n) = T(n/2) + n?

Example: T(n) = 4T(n/2) + n*

Solving Recurrences: Master Method

Example: T(n) = 7T(n/3) + n*

Example: T(n) = 7T(n/2) + n?

Solving Recurrences: Alt. Master Method

Example: T(n)=9T(n/3)+n

Example: T(n)=T(n/2) +1

Solving Recurrences: Alt. Master Method

Example: T(n) = T(n/2) + n?

Example: T(n) = 4T(n/2) + n*

1/29/20

Solving Recurrences: Alt

Example: T(n) = 7T(n/3) + n*

Example: T(n) = 7T(n/2) + n?

. Master Method

