Analysis of Divide-and-Conquer Algorithms

The divide-and-conquer paradigm (Ch 2.3)

- divide the problem into a number of subproblems
- conquer the subproblems by solving them
- combine the subproblem solutions to get the final solution

add all these steps at the first level to get recurrence relation for T(n)

Example: Merge-Sort

- divide the n-element input sequence to be sorted into two n/2-element subsequences.
- · conquer the subproblems recursively using merge sort.
- combine the resulting two sorted n/2-element sequences by merging.

Analyzing Divide-and-Conquer Algorithms

A recursive algorithm can often be described by a recurrence equation that describes the overall runtime on a problem of size n in terms of the runtime on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

$$T(n) = \begin{cases} 1 & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$
where

- a = number of subproblems we divide the problem into
- n/b = size of the subproblems (in terms of n)
- D(n) = time to divide the size n problem into subproblems
- C(n) =time to combine the subproblem solutions to get the answer for the problem of size n

Merge-Sort(A,p,r) Merge(A,p,q,r) 1. if p < r then
2. q = [(p+r)/2] 1. $n_1 = q-p+1; n_2 = r-q;$ 2. Create arrays Merge-Sort(A,p,q) $L[1...n_1+1]$ and Merge-Sort(A,q+1,r) R[1...n₂+1] Merge (A,p,q,r) 3. for i = 1 to n₁ L[i] = A[p+i-1]4. Initial call: 5. for i = 1 to n_2 Merge-sort(A,1,length(A)) R[i] = A[q+i]7. $L[n_1+1] = R[n_2+1] = \infty$ The Merge subroutine takes linear 8. i = i = 1time to merge n elements that are divided into two *sorted* arrays of n/2 elements each. 9. for k = p to r 10. if $L[i] \le R[j]$ 11. A[k] = L[i]12. i = i+1 13. else A[k] = R[j] 14. j = j+1

Analyzing Merge-Sort

2 8 1 5 4 3 7 6 $D(n) = \theta(1)$ 2 8 1 5 4 3 7 6

2 8 1 5 4 3 7 6

2 8 1 5 4 3 7 6

Why are there lgn+1 levels? Because lgn is the number of steps it takes to divide n by 2 until the size of the result is ≤ 1 (counting root level)

How long does it take to find the midpoint of an array? Constant time

Analyzing Merge-Sort

1 2 3 4 5 6 7 8 $C(n) = \theta(n)$ 1 2 5 8 3 4 6 7

2 8 1 5 3 4 6 7

2 8 1 5 4 3 7 6 $T(n) = \begin{cases} \theta(1) & \text{if } n = 1 \\ 2T(n/2) + \theta(n) & \text{otherwise} \end{cases}$ Recurrence for worst-case running time for Merge-Sort

Analyzing Merge-Sort

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1 \\ 2T(n/2) + \theta(n) & \text{otherwise} \end{cases}$$

Recurrence for worst-case running time for Merge-Sort

$$aT(n/b) + D(n) + C(n)$$

- a = 2 (two subproblems)
- n/b = n/2 (each subproblem has size approx n/2)
- $D(n) = \theta(1)$ (just compute midpoint of array)
- $C(n) = \theta(n)$ (merging can be done by scanning sorted subarrays)

General Plan for calculating running time of recursive algorithms

- 1. Decide on a parameter indicating input size.
- 2. Set up a recurrence relation, with the appropriate base cases.
- Solve the recurrence or otherwise ascertain the order of growth using, e.g. backward substitution, the master method, a recursion tree, or a good guess.

Solving Recurrences

I will cover the first 2 techniques to solve recurrences. The third method is covered in the book (as is solving with a good guess).

- <u>Backward Substitution</u>: involves substituting next step into equation until you see a pattern, converting the pattern to a summation, and solving the summation.
- 2. Apply the "Master Theorem": If the recurrence has the form T(n) = aT(n/b) + f(n) then there is a formula that can (often) be applied, given in § 4-5.
- 3. Apply the <u>recursion tree method</u> from § 4-4.

To make the solutions simpler, we will

• assume base cases are constant time, i.e., $T(n) = \theta(1)$ for small enough n.

Review of Logarithms

A logarithm is an inverse exponential function. Saying $b^X = y$ is equivalent to saying $\log_{h} y = x$.

• notation convention for logarithms:

 $\lg n = \log_2 n$ (binary logarithm -- note, no subscript, just \lg) $\ln n = \log_e n$ (natural logarithm)

• properties of logarithms:

 $\begin{aligned} \log_b(xy) &= \log_b x + \log_b y \\ \log_b(x/y) &= \log_b x - \log_b y \\ \log_b x^a &= a\log_b x \\ \log_b a &= \log_x a/\log_x b \end{aligned}$

 $log_b = log_x a / log_x b$ $a = b^{log_b a}$ (e.g., $n = 2^{lgn} = n^{lg2}$)

Log functions grow very slowly as n grows without bound.

More Math Notation

- Floor: [x] = the largest integer $\leq x$ (round down)
- Ceiling: $\lceil x \rceil$ = the smallest integer $\ge x$ (round up)
- Summations: (see Appendix A, p.1146-1147)
- Geometric, Telescoping & Harmonic series: (see Appendix A, p.1147-1148)

Solving recurrence for n!

Algorithm F(n)
Input: a positive integer n
Output: n!
1. if n=1
2. return 1
3. else
4. return F(n-1) * n

We can solve this recurrence (ie, find an expression of the running time T(n) that is not given in terms of itself) using a method known as backward substitution.

T(n) for the factorial problem

For recursive algorithms such as computing the *factorial* of n, we get an expression like the following:

$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + D(n) + C(n) & \text{otherwise} \end{cases}$$

where

- n-1 = size of the subproblems (in terms of n)
- D(n) = time to divide the size n problem into subproblems
- C(n) =time to combine the subproblem solutions to get the answer for the problem of size n

Solving recurrence for n!

Algorithm F(n)
Input: a positive integer n
Output: n!
1. if n=1
2. return 1
3. else
4. return F(n-1) * n

$$\begin{split} T(n) &= T(n\text{-}1) + 1 & \text{(subst } T(n\text{-}1) = [T(n\text{-}2) + 1] \text{)} \\ &= [T(n\text{-}2) + 1] + 1 = T(n\text{-}2) + 2 & \text{(subst } T(n\text{-}2) = [T(n\text{-}3) + 1] \text{)} \\ &= [T(n\text{-}3) + 1] + 2 = T(n\text{-}3) + 3 \dots & \text{...} \\ &\dots & = T(n\text{-}i) + i = \dots = T(n\text{-}n) + n = 0 + n \end{split}$$

Therefore, this algorithm has linear running

$$T(n) = T(n-1) + 1$$

 $T(1) = 1$

We can solve this recurrence (ie, find an expression of the running time T(n) that is not given in terms of itself) using a method known as backward substitution.

Solving Recurrences: Backward Substitution

 $\begin{array}{lll} \textbf{Example:} & T(n) = 2T(n/2) + n \\ \hline T(n) & = & 2T(n/2) + n \\ & = & 2[2T(n/4) + n/2] + n & /* \ \text{expand} \ T(n/2) */ \\ & = & 4T(n/4) + n + n & /* \ \text{simplify} */ \\ & = & 4[2T(n/8) + n/4] + n + n & /* \ \text{expand} \ T(n/4) */ \\ & = & 8T(n/8) + n + n + n & /* \ \text{simplify} */ \\ & = & \cdots & \cdots \\ & = & 2^{lgn}T(n/2^{lgn}) + \ldots + n + n + n & /* \ \text{after lgn iterations} */ \\ & = & c2^{lgn} + n lgn \\ & = & cn + n lgn & /* 2^{lgn} = n^{lg2} = n */ \\ & = & \theta(n lgn) \\ \hline \end{array}$

Solving Recurrences: Backward Substitution

Solving Recurrences: Backward Substitution

$$\begin{array}{lll} & \text{Example: } T(n) = T(n/2) + 1 \\ \hline T(n) & = & T(n/2) + 1 \\ & = & [T(n/4) + 1] + 1 & /* \text{ expand } T(n/2) */ \\ & = & T(n/4) + 2 & /* \text{ simplify } */ \\ & = & [T(n/8) + 1] + 2 & /* \text{ expand } T(n/4) */ \\ & = & T(n/8) + 3 & /* \text{ simplify } */ \\ & = & \cdots & \cdots \\ & = & T(n/2^{lgn}) + lgn & /* 2^{lgn} = n^{lg2} = n */ \\ & = & c + lgn \\ & = & \theta(lgn) & \text{Which well-known algorithm has this running time??} \\ \hline \end{array}$$

Solving Recurrences: Master Method (§4.5)

The master method provides a 'cookbook' method for solving recurrences where n is divided repeatedly by a constant. This is the method we will use most often for solving recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

Where a is the number of sub-problems, n/b is the size of each subproblem, and f(n) is the time to divide or combine

Solving Recurrences: Master Method (§4.5)

Then, T(n) can be bounded asymptotically as follows:

- $1. \quad T(n) = \theta(n^{log}b^a) \qquad \text{if} \qquad f(n) = O(n^{log}b^{a \cdot \epsilon}) \text{ for some constant } \epsilon > 0$
- 2. $T(n) = \theta(n^{\log_b a} \lg n)$ if $f(n) = \theta(n^{\log_b a})$
- 3. $T(n) = \theta f(n)$ $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ if

and if $af(n/b) \le cf(n)$ for some positive constant

c < 1 and all sufficiently large n.

(Regularity condition)

Solving Recurrences: Master Method (§4.5)

Master Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + f(n)$$

Where a is the number of sub-problems, n/b is the size of each sub-problem, and f(n) is the time to divide or combine data.

Then, T(n) can be bounded asymptotically as follows:

- 1. $T(n) = \theta(n^{\log_b a})$ if $f(n) \le n^{\log_b a \epsilon}$ for some constant $\epsilon > 0$
- 2. $T(n) = \theta(n^{log_ba}lgn)$ if $f(n) = n^{log_ba}$
- if $f(n) \ge n^{\log_b a + \epsilon}$ for some constant $\epsilon > 0$ 3. $T(n) = \theta f(n)$

Alternate Version of Master Method

Let $a \ge 1$, b > 1, $k \ge 0$ be constants, let p be a real number, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + \theta(n^k log^p n)$$

Then, T(n) can be bounded asymptotically as follows:

- 1. If $a > b^k$, then $T(n) = \theta(n^{\log_b a})$
- 2. If a = b^k, then
 a) If p > -1, then
- $$\begin{split} T(n) &= \theta(n^{log_ba} \log^{p+1} n) \\ T(n) &= \theta(n^{log_ba} \log \log n) \\ T(n) &= \theta(n^{log_ba}) \end{split}$$
 b) If p = -1, then
- c) If p < -1, then 3. If $a < b^k$, then
- a) If $p \ge 0$, then $T(n) = \theta(n^k \log^p n)$ b) If p < 0, then $T(n) = \theta(n^k)$

Solving Recurrences: Master Method (§4.3)

Case 3 requires us to also show $af(n/b) \le cf(n)$, the "regularity" condition.

The regularity condition always holds whenever $f(n) = n^k$ and $f(n) \ge n^k$ $n^{log}{}_{b}{}^{a+\epsilon},$ so we don't need to check regularity when f(n) is a polynomial.

However, you do need to mention the regularity condition in your arguments to show that the function is $\theta f(n)$ (i.e., if case 3 applies)

Solving Recurrences: Master Method (§4.3)

These 3 cases do not cover all the possibilities for f(n).

There is a gap between cases 1 and 2 when f(n) is smaller than $n^{log_{ba}}$, but not polynomially smaller.

There is a gap between cases 2 and 3 when f(n) is larger than nlogba, but not polynomially larger.

If the function falls into one of these 2 gaps, or if the regularity condition can't be shown to hold, then the master method can't be used to solve the recurrence. Try backward substitution, a good guess proved by induction, or a recursion tree.

Solving Recurrences: Master Method

Example: T(n) = 9T(n/3) + n

- a = 9, b = 3, f(n) = n, $n^{log_b a} = n^{log_3 9} = n^2$
- compare f(n) = n with n²

 $n = O(n^{2-\epsilon})$ (so f(n) is polynomially smaller than n^{logba})

• case 1 applies: $T(n) \in \theta(n^2)$

Example: T(n) = T(n/2) + 1

- a = 1, b = 2, f(n) = 1, $n^{log}b^a = n^{log}2^1 = n^0 = 1$
- compare f(n) = 1 with 1

 $1 = \theta(n^0)$ (so f(n) is polynomially equal to $n^{\log_b a}$)

• case 2 applies: $T(n) \in \theta(n^0 | gn) \in \theta(|gn)$

Solving Recurrences: Master Method

Example: $T(n) = T(n/2) + n^2$

- a = 1, b = 2, $f(n) = n^2$, $n^{log}b^a = n^{log}2^1 = n^0 = 1$
- compare f(n) = n² with 1

 $n^2 = \Omega(n^{0+\epsilon})$ (so f(n) is polynomially larger)

• Since f(n) is a polynomial in n, the regularity condition is upheld and case 3 holds, $T(n) \in \theta(n^2)$

Example: $T(n) = 4T(n/2) + n^2$

- a = 4, b = 2, $f(n) = n^2$, $n^{\log_b a} = n^{\log_2 4} = n^2$
- compare f(n) = n² with n²

 $n^2 = \theta(n^2)$ (so f(n) is polynomially equal)

• Case 2 holds and $T(n) \in \theta(n^2 \lg n)$

Solving Recurrences: Master Method

Example: $T(n) = 7T(n/3) + n^2$

- a = 7, b = 3, $f(n) = n^2$, $n^{\log_b a} = n^{\log_3 7} = n^{1+\epsilon}$
- compare f(n) = n² with n^{1+ε}
- $n^2 = \Omega(n^{1+\epsilon})$ (so f(n) is polynomially larger)

- Since f(n) is a polynomial in n, the regularity condition holds , so case 3 holds and T(n) $\in \theta(n^2)$

Example: $T(n) = 7T(n/2) + n^2$

- a = 7, b = 2, $f(n) = n^2$, $n^{\log_b a} = n^{\log_2 7} = n^{2+\epsilon}$
- compare f(n) = n² with n^{2+ε}
 - $n^2 = O(n^{2+\epsilon})$ (so f(n) is polynomially smaller)
- Case 1 holds and $T(n) \in \theta(n^{log_27})$

Alternate Version of Master Method

Let $a \ge 1$, b > 1, $k \ge 0$ be constants, let p be a real number, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + \theta(n^k log^p n)$$

Then, T(n) can be bounded asymptotically as follows:

- 1. If $a > b^k$, then $T(n) = \theta(n^{\log_b a})$
- $2. \quad \text{If a = bk, \quad then $T(n)$ = $\theta(n^{log}b^a \log^{p+1}n)$}$
- 3. If $a < b^k$, then $T(n) = \theta(n^k \log^p n)$

Solving Recurrences: Master Method V2

Example: T(n) = 9T(n/3) + n

- $a = 9, b = 3, k = 1, p = 0, n^{\log_b a} = n^{\log_3 9} = n^2$
- compare a = 9 with $b^k = 3$, 9 > 3 so
- case 1 applies: $T(n) \in \theta(n^2)$

Example: T(n) = T(n/2) + 1

- $a = 1, b = 2, k = 0, p = 0, n^{\log_b a} = n^{\log_2 1} = n^0 = 1$
- compare a = 1 with b^K = 1, 1 = 1
- case 2 applies: $T(n) \in \theta(logn)$

Solving Recurrences: Master Method V2

Example: $T(n) = T(n/2) + n^2$

- a = 1, b = 2, k = 2, p = 0 $n^{log}b^a = n^{log}b^1 = n^0 = 1$
- compare a = 1 with $b^k = 2^2 = 4$, 1 < 4
- Case 3 holds, $T(n) \in \theta(n^2)$

Example: $T(n) = 4T(n/2) + n^2$

- a = 4, b = 2, k = 2, p = 0, $n^{log}b^a = n^{log}2^4 = n^2$
- compare a with 2², 4 = 4
- Case 2 holds and $T(n) \in \theta(n^2 lgn)$

Solving Recurrences: Master Method V2

Example: $T(n) = 7T(n/3) + n^2$

- $\begin{array}{ll} \bullet & \text{a = 7, b = 3, k = 2, p = 0, } n^{log_ba} = n^{log_37} = n^{1+\epsilon} \\ \bullet & \text{compare a to b}^k \colon 7 < 9 \\ \bullet & \text{Case 3 holds and T(n)} \in \theta(n^2) \end{array}$

Example: $T(n) = 7T(n/2) + n^2$

- a = 7, b = 2, k = 2, p = 0, $n^{log}b^a = n^{log}2^7 = n^{2+\epsilon}$ compare a to b^k : 7 > 4 Case 1 holds and $T(n) \in \theta(n^{log}2^7)$