12/31/19

Analysis of Divide-and-Conquer Algorithms
The divide-and-conquer paradigm (Ch 2.3)

« divide the problem into a number of subproblems
* conquer the subproblems by solving them
« combine the subproblem solutions to get the final solution

add all these steps at the first level to get recurrence relation for T(n)

Example: Merge-Sort

+ divide the n-element input sequence to be sorted into two
n/2-element subsequences.

+ conquer the subproblems recursively using merge sort.

* combine the resulting two sorted n/2-element sequences by
merging.

Analyzing Divide-and-Conquer Algorithms

A recursive algorithm can often be described by a recurrence equation that
describes the overall runtime on a problem of size n in terms of the runtime
on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

Tin) = 1 ifnsc

- at(n/b) + D(n) + C(n) otherwise
where
e a = number of subproblems we divide the problem into
* n/b = size of the subproblems (in terms of n)
* D(n) = time to divide the size n problem into subproblems
e C(n) = time to combine the subproblem solutions to get the
answer for the problem of size n

Merge-Sort(A,p,r) Merge (A,p.q.r)
l.ifp<r the;‘ 1. n, = g-p+l; n, = r-q;
2. = +: 2

q Lip+x) /2] 2. Create arrays
3 Merge-Sort (A,p,q) L1 n,+1] and
4. Merge-Sort(A,g+l,r) R[l..'n1+1]
5. Merge(A,p,q,x) R

3. for i =1 to n;
4. L[i] = A[p+i-1]
Initial call: 5. for i = 1 to n,
Merge-sort(A,1,length(A)) 6. R[i]= A[qti]
7. L[n;+1] = R[n,+1] = o
The Merge subroutine takes linear 8. iz =1
time to merge n elements that are s A=3=
divided into two sorted arrays of n/2 9. for k =p tor
elements each. 10. if L[i] = R[j]
11. A[k] = L[i]
12. i= i+l
13. else A[k] = R[j]
14. j = j+1

Analyzing Merge-Sort

[2 8 1 5 4 3 7 6| Di=06(1)

2 8 1 5]/[4 3 7 ¢

Divide
(Ign levels)

Why are there Ign levels?

How long does it take to find the midpoint of an array?

Analyzing Merge-Sort

[2 8 1 5 4 3 7 6 bm=61)

Divide
(Ign + 1 levels)

h h | | Is? Because Ign is the number of steps it takes
Why are there Ign+1 levels: to divide n by 2 until the size of the result is < 1
(counting root level)

How long does it take to find the midpoint of an array? Constant time

Analyzing Merge-Sort

(1 2 3 4 5 6 7 8] cm=6m

[1 2 5 8][3 4 6 7

Merge
(Ign + 1 levels)

2 8][1 5/[3 4] [6 7
2] [g] [1] [5] [4] [3][7] [6]

Tin) = (1) ifn=1
2T(n/2) + 6(n) otherwise

Recurrence for worst-case running time for Merge-Sort

12/31/19

Analyzing Merge-Sort

Tin) = (1) ifn=1
2T(n/2) + 6(n) otherwise

Recurrence for worst-case running time for Merge-Sort

al(n/b) + D(n) + C(n)

a =2 (two subproblems)
n/b =n/2 (each subproblem has size approx n/2)

D(n) = 6(1) (just compute midpoint of array)

C(n) =6(n) (merging can be done by scanning sorted subarrays)

Recurrence Tree for Merge-Sort

cn cn
| cn/2 cn/2 cn
h =lgn +1 levels

cn/4 cn/4 cn/4 N4 ey CN
SN NN
¢ E ¢ e it b

cnlgn +cn

Tin) = {c ifn=1

2T(n/2) +cn otherwise

Recurrence tree for Merge-Sort

General Plan for calculating running time
of recursive algorithms

Decide on a parameter indicating input size.

2. Set up arecurrence relation, with the appropriate base
cases.

3. Solve the recurrence or otherwise ascertain the order
of growth using, e.g. backward substitution, the master
method, a recursion tree, or a good guess.

Solving Recurrences

I will cover the first 2 techniques to solve recurrences. The third method is
covered in the book (as is solving with a good guess).

1. Backward Substitution: involves substituting next step into equation until
you see a pattern, converting the pattern to a summation, and solving
the summation.

2. Apply the "Master Theorem": If the recurrence has the form
T(n) = aT(n/b) + f(n)
then there is a formula that can (often) be applied, given in § 4-5.

3. Apply the recursion tree method from § 4-4.

To make the solutions simpler, we will
+ assume base cases are constant time, i.e., T(n) = 6(1) for small enough n.

Review of Logarithms

A logarithm is an inverse exponential function. Saying pX = y is equivalent
to saying log,y = x.

* notation convention for logarithms:
Ign =log,n (binary logarithm -- note, no subscript, just Ig)
Inn =log.n (natural logarithm)

* properties of logarithms:
logy(xy) = logyx + logyy
logy, (x/y) = logyX - logpy
logpx® = alog,x
logya= log,a/log,b
a=bl3? (e.g., n=29"=nle?)

Log functions grow very slowly as n
grows without bound.

More Math Notation

e Floor: |x]=the largestinteger < x (round down)
* Ceiling: [x] = the smallest integer 2 x (round up)
¢ Summations: (see Appendix A, p.1146-1147)

* Geometric, Telescoping & Harmonic series: (see Appendix
A, p.1147-1148)

Solving recurrence for n!

Algorithm F(n)
Input: a positive integer n
Output: n!
if n=1
return 1
else
return F(n-1) * n

W=

We can solve this recurrence (ie, find an expression of the running time
T(n) that is not given in terms of itself) using a method known as
backward substitution.

12/31/19

T(n) for the factorial problem

For recursive algorithms such as computing the factorial of n, we get an
expression like the following:

1 ifn=0
T(n) = { T(n-1) + D(n) + C(n) otherwise

where

* n-1 = size of the subproblems (in terms of n)

* D(n) = time to divide the size n problem into subproblems

* ((n) = time to combine the subproblem solutions to get the
answer for the problem of size n

Solving recurrence for n!

Algorithm F(n)

o T(n)=T(n-1)+1 (substT(n-1)=[T(n-2) +1])
Input: a positive integer n

=[T(n-2)+1]+1=T(n-2)+2

Output: n! (‘subst T(n-2) = [T(n-3) + 1])
1. ifn=1 =[T(n-3) + 1] + 2 =T(n-3) + 3...
2 return 1
3. else =T(n-i)+i=..=T(n-n)+n=0+n
4, return F(n-1) * n

Therefore, this algorithm has linear running
time.

T(n) = T(n-1) + 1
T)=1

We can solve this recurrence (ie, find an expression of the running time
T(n) that is not given in terms of itself) using a method known as
backward substitution.

Solving Recurrences: Backward Substitution
Example: T(n) = 2T(n/2) + n

T(n) 2T(n/2) + n

2[2T(n/4) + n/2] + n /* expand T(n/2) */

4T(n/4)+n+n /* simplify */

4[2T(n/8) + n/4] + n+n /[*expand T(n/4) */

8T(n/8)+n+n+n /* simplify */

29"T(n/2'") + ...+ n+n+n /*after Ign iterations */

= 29 + nign
= cn+nign /¥ 29" = n'% = nx/

= 6(nign)

Solving Recurrences: Backward Substitution
Example: T(n) = 4T(n/2) + n

T(n) 4T(n/2) +n

Solving Recurrences: Backward Substitution

Example: T(n) = T(n/2) + 1

4[4T(n/4) + n/2] + n
16T(n/4) + 2n +n
16[4T(n/8) + n/4] + 2n + n
64T(n/8) + 4n + 2n + n

/* expand T(n/2) */
/* simplify 16 = 42%/
/* expand T(n/4) */
/* simplify 64 = 43/

497T(n/29") + ... +4n +2n +n /* after Ign iterations */

e
CAT 40 32 22042k 2

cn'%* 4+ n (29"- 1)
c® +n(n-1)
o(n®)

/* convert to summation */

%490 = ot 2%y
75290 = 92 =y

Tn) = T(n/2)+1
= [T(n/4)+1]+1 /* expand T(n/2) */
= T(n/4) +2 /* simplify */
= [T(n/8) +1]+2 /* expand T(n/4) */
= /* simplify */

T(n/8) + 3

T(n/2'9") + Ign

= c+lgn

= 0(gn)

1% 2Ign = nIgZ =nx*

Which well-known algorithm
has this running time??

12/31/19

Solving Recurrences: Master Method (§4.5)

The master method provides a 'cookbook' method for
solving recurrences where n is divided repeatedly by a
constant. This is the method we will use most often for
solving recurrences of the form

T(n) = aT(n/b) + f(n)

Where a is the number of sub-problems, n/b is the size of
each subproblem, and f(n) is the time to divide or combine
data.

Solving Recurrences: Master Method (§4.5)

Then, T(n) can be bounded asymptotically as follows:
1. T(n) = BN if f(n) = O(n°%*) for some constant ¢ > 0
2. T(n) = B(n°*°Ign) if f(n) = B(n°%?)
3. T(n) = 6f(n) if f(n) = Q(n°%***) for some constant & > 0
and if af(n/b)< cf(n) for some positive constant
c < 1 and all sufficiently large n.

(Regularity condition)

Solving Recurrences: Master Method (§4.5)

Master Theorem: Leta > 1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:
T(n) = aT(n/b) + f(n)

Where a is the number of sub-problems, n/b is the size of each sub-
problem, and f(n) is the time to divide or combine data.

Then, T(n) can be bounded asymptotically as follows:
1. T(n) = 6(n°%) if f(n) < n'* for some constant & > 0
2. T(n) = 6(nN°%AIgn) if f(n) = n'°%°

3. T(n) = 6f(n) if f(n) = n°%** for some constant ¢ > 0

Alternate Version of Master Method

Leta =1, b > 1, k>0 be constants, let p be a real number, and let
T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + &nklog’n)
Then, T(n) can be bounded asymptotically as follows:

1. Ifa>bk, then T(n)=6(n"%?)

2. Ifa=Dbk then
a)lf p>-1,then T(n) = 6(n°**log”"'n)
b) If p=-1,then T(n) = 6(n"%*loglogn)
c)If p<-1,then T(n)=6(n°%®?)

3. Ifa<bk then
a)lf p20,then T(n) = 6(n"log’n)
b)If p<0,then T(n)=6(n%)

Solving Recurrences: Master Method (§4.3)

Case 3 requires us to also show af(n/b)< cf(n), the “regularity”
condition.

The regularity condition a/ways holds whenever f(n) = nk and f(n) >
n°9%2*t 5o we don’t need to check regularity when f(n) is a
polynomial.

However, you do need to mention the regularity condition in your

arguments to show that the function is 6f(n) (i.e., if case 3 applies)

Solving Recurrences: Master Method (§4.3)

These 3 cases do not cover all the possibilities for f(n).

There is a gap between cases 1 and 2 when f(n) is smaller than nlogea,
but not polynomially smaller.

There is a gap between cases 2 and 3 when f(n) is larger than n'og2, but
not polynomially larger.

If the function falls into one of these 2 gaps, or if the regularity condition
can't be shown to hold, then the master method can’t be used to solve
the recurrence. Try backward substitution, a good guess proved by
induction, or a recursion tree.

12/31/19

Solving Recurrences: Master Method

Example: T(n)=9T(n/3)+n
e a=9,b=3,f(n)=n, nt =8P = 2
e compare f(n) = n with n2
n=0(n2¢) (so f(n) is polynomially smaller than n
e case 1applies: T(n)E B(nz)

logpa)

Example: T(n)=T(n/2) +1

e a=1,b=2f(n)=1,n"%" =nP82'=no=1
e compare f(n) =1 with 1

1=0(n% (so f(n)is polynomially equal to n
« case 2 applies: T(n) € B(n°lgn) € B(Ign)

logpa)

Solving Recurrences: Master Method

Example: T(n) = T(n/2) + n?

e a=1,b=2f(n)=n2 n® =p82'=pno=1

e compare f(n) = n? with 1
n2 = Q(n%¢) (so f(n) is polynomially larger)

¢ Since f(n) is a polynomial in n, the regularity condition is
upheld and case 3 holds, T(n) € 6(n?)

Example: T(n) =4T(n/2) + n?

e a=4,b=2, f(n)=n? n8 = %822 2
¢ compare f(n) = n? with n?

n2=0(n?) (so f(n) is polynomially equal)
¢ Case 2 holds and T(n) € 6(n?lgn)

Solving Recurrences: Master Method

Example: T(n) = 7T(n/3) + n*
e a=7,b=3,f(n)=n n'®" = 87 = pire
* compare f(n) = n2 with nl*¢
n? = Q(n'*¢) (so f(n) is polynomially larger)
¢ Since f(n) is a polynomial in n, the regularity condition holds, so
case 3 holds and T(n) € 6(n?)

Example: T(n) = 7T(n/2) + n?

e a=7,b=2,f(n)=n? n°®? = %87 = pare
* compare f(n) = n? with n?*¢

n2=0(n2*) (so f(n) is polynomially smaller)
« Case 1 holds and T(n) € 6(n'"**?)

Alternate Version of Master Method

Leta =1, b > 1, k>0 be constants, let p be a real number, and let
T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + &n*logn)

Then, T(n) can be bounded asymptotically as follows:

1. Ifa>bk, thenT(n) = 0(n'%?)
2. Ifa=bk thenT(n)=6(n"%"log""n)

3. Ifa<b¥ thenT(n)=0(n"log’n)

Solving Recurrences: Master Method V2

Example: T(n)=9T(n/3)+n

e a=9,b=3k=1,p=0, 8 =8P = 2
e comparea=9withbk=3,9>3s0

« case 1applies: T(n) €0(n?)

Example: T(n)=T(n/2)+1

e a=1,b=2k=0,p=0, n'" =n'82'=ppo=1
e comparea=1withbX=1,1=1

» case 2 applies: T(n) € O(logn)

Solving Recurrences: Master Method V2

Example: T(n) = T(n/2) + n?

e a=1,b=2k=2p=0n"%" =n'82'=po=1
e comparea=1withbk=22=4,1<4

¢ Case 3 holds, T(n) € 6(n?)

Example: T(n) =4T(n/2) + n?

e a=4,b=2k=2,p=0,n"% =n'82%= 2
e compare a with22,4=4
* Case 2 holds and T(n) € 6(n2lgn)

12/31/19

Solving Recurrences: Master Method V2

Example: T(n)=7T(n/3) + n?
e a=7,b=3,k=2,p=0,n"% == pi+e
e compareatobk: 7<9
¢ Case 3 holds and T(n) € 6(n?)

Example: T(n) = 7T(n/2) + n?

e a=7,b=2k=2,p=0,n"%* =827 = n2re
e compareatobk:7>4
« Case 1 holds and T(n) € 8(n'®?")

