
9/18/19

1

Analysis of InsertionSort
InsertionSort sorts an array of elements in ascending order.

 InsertionSort(A) times

 1. for j = 2 to length[A] n

 2. key = A[j] n-1

 3. i = j - 1 n-1

 4. while i > 0 and A[i] > key

 5. A[i + 1] = A[i]

 6. i = i - 1

 7. A[i + 1] = key n-1

€

t j
j= 2

n

∑

€

(t j −1)
j= 2

n

∑

€

(t j −1)
j= 2

n

∑

Analysis of InsertionSort

 InsertionSort(A)
1.  for j = 2 to length[A]
2.  key = A[j]
3.  i = j - 1
4.  while i > 0 and A[i] > key
5.  A[i + 1] = A[i]
6.  i = i - 1
7.  A[i + 1] = key

•  For insertion sort,
does the running
time vary for different
input instances?

If so, give an
instance of best-case
and worst-case
inputs.

What is the raw running time for the best case?
 c1n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)
 = (c1 + c2 + c3 + c4 + c7)n – (c2+ c3+ c4 + c7) = an - b

What is the raw running time for the worst case?
 Add up terms on last slide. (an2 + bn + c)

Analyzing Recursive Algorithms (Ch. 4)

A recursive algorithm can often be described by a recurrence
equation that describes the overall runtime on a problem of
size n in terms of the runtime on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

 T(n) =

θ(1) if n ≤ c
aT(n/b) + D(n) + C(n) otherwise

•  a = number of subproblems we divide the problem into
•  n/b = size of the subproblems (in terms of n)
•  D(n) = time to divide the size n problem into subproblems
•  C(n) = time to combine the subproblem solutions to get the

 answer for the problem of size n

where

Solving Recurrences
We will use the following methods to solve recurrences

1.  Backward Substitution.

2.  Apply the "Master Theorem": If the recurrence has the form
 T(n) = aT(n/b) + f(n)
 then there are 2 formulae that can (often) be applied; one of these is
given in § 4-3.

Recurrence trees can be used along with backward substitution to guess
the running time of a recurrence relation. Most recurrences of the form
T(n) = aT(n/b) + f(n) will be solved using the Master Theorem.

To make the solutions simpler, we will

•  assume base cases are constant, i.e., T(n) = θ(1) for n small enough.

Solving recurrence with backward substitution

Algorithm F(n)
 Input: a positive integer n
 Output: n!
1.  if n=0
2.  return 1
3.  else
4.  return F(n-1) * n

T(n) = T(n-1) + 1
T(0) = 0

T(n) = T(n-1) + 1 subst T(n-1) = T(n-2) + 1
= [T(n-2) + 1] + 1 = T(n-2) + 2

 subst T(n-2) = T(n-3) + 1
=[T(n-3) + 1] + 2 = T(n-3) + 3
…
=T(n-i) + i =
…
= T(n-n) + n = T(0) + n = 0 + n = O(n)

Therefore, this algorithm has linear running
time.

We solved this recurrence (ie, found an expression of the
running time T(n) that is not given in terms of itself)
using a method known as backward substitution.

Analyzing Recursive Algorithms

For recursive algorithms such as computing the factorial of n,
we get an expression like the following:

 T(n) = 1  if n = 0

1T(n-1) + D(n) + C(n) otherwise

•  a = number of subproblems (1)
•  n-1 = size of the subproblems (in terms of n)
•  D(n) = time to divide the size n problem into subproblems = 1
•  C(n) = time to combine the subproblem solutions to get the

 answer for the problem of size n = 1

where

9/18/19

2

Solving Recurrences: Backward Substitution

 Example: T(n) = 2T(n/2) + n

T(n) = 2T(n/2) + n

 = 2[2T(n/4) + n/2] + n /* expand T(n/2) */
 = 4T(n/4) + n + n /* simplify */
 = 4[2T(n/8) + n/4] + n + n /* expand T(n/4) */
 = 8T(n/8) + n + n + n /* simplify…see a pattern? */

 . . . continue until T(n/n) = T(1) is reached

 = 2lgnT(n/2lgn) + . . . + n + n + n /* after lgn iterations */

 = 2lgnT(1) + . . . + n + n + n /* 2lgn = nlg2 = n */
 = c2lgn + nlgn

 = cn + nlgn
 = O(nlgn)

Recursion Tree for T(n) = 2T(n/2) + n

c if n = 1
2T(n/2) + cn otherwise

T(n) =

cn cn

cn/2 cn/2 cn

cn/4 cncn/4cn/4cn/4

c c c c c c cc cn

cnlgn + cn

lgn + 1 levels
 (h = lgn)

Solving Recurrences: Backward Substitution

 Example: T(n) = 2T(n/2) + 4n

T(n) = 2T(n/2) + 4n

 = 2[2T(n/4) + 4(n/2)] + 4n /* expand T(n/2) */
 = 4T(n/4) + 8n/2 + 4n /* simplify */
 = 4T(n/4) + 4n + 4n
 = 4[2T(n/8) + 4(n/4)] + 4n + 4n /* expand T(n/4) */
 = 8T(n/8) + 16n/4 + 4n + 4n /* simplify…see a pattern? */
 = 8T(n/8) + 4n + 4n + 4n
 . . . continue until T(n/n) = T(1) is reached
 = 2lgnT(n/2lgn) + . . . + 4n + 4n + 4n /* after lgn iterations */
 = nT(1) + lgn(4n) /* 2lgn = nlg2 = n */

 = cn + 4nlgn

 = O(nlgn)

Solving Recurrences: Backward Substitution

 Example: T(n) = 4T(n/2) + n

T(n) = 4T(n/2) + n

 = 4[4T(n/4) + n/2] + n /* expand T(n/2) */
 = 16T(n/4) + 4n/2 + n /* simplify */
 = 16[4T(n/8) + n/4] + 2n + n /* expand T(n/4) */
 = 64T(n/8) + 16n/4 + 2n + n /* simplify */
 = 64T(n/8) + 4n + 2n + n
 . . . continue until T(n/n) = T(1) is reached
 = 4lgnT(n/2lgn) + . . . + 4n + 2n + n /* after lgn iterations */

 = c4lgn + n /* convert to summation */
 /* p. 1147 */
 = cnlg4 + n (2lgn - 1) /* 4lgn = nlg4 = n2 */
 = cn2 + n(n - 1) /* 2lgn = nlg2 = n */
 = O(n2) €

2k
k= 0

lgn−1

∑ = 20 + 21 + ...+ 2lg n−1

Binary Search (recursive version)
Algorithm Binary-Search-Rec(A[1…n], k, l, r)
 Input: a sorted array A of n comparable items, search key k, leftmost
 and rightmost index positions in A
 Output: Index of array’s element that is equal to k or -1 if k not found
1.  if (l > r) return -1 ; k not found
2.  else
3.  m = ⎣(l + r)/2⎦ ; m is midpoint
4.  if k = A[m]
5.  return m ; found index of k at A[m]
6.  else if k < A[m]
7.  return Binary-Search-Rec(A, k, l, m-1) ; look in lower half
8.  else
9.  return Binary-Search-Rec(A, k, m+1, r) ; look in upper half

What is the running time of this algorithm for an input of size n? We
need to figure out what T(n) is for this algorithm.

Solving Recurrences: Backward Substitution

 Example: T(n) = T(n/2) + 1

T(n) = T(n/2) + 1

 = [T(n/4) + 1] + 1 /* expand T(n/2) */
 = T(n/4) + 2 /* simplify */
 = [T(n/8) + 1] + 2 /* expand T(n/4) */
 = T(n/8) + 3 /* simplify */
 =

 = T(n/2lgn) + lgn /* 2lgn = nlg2 = n */
 = T(1) + lgn

 = c + lgn

 = O(lgn)

9/18/19

3

Analysis of Divide-and-Conquer Algorithms
The divide-and-conquer paradigm (Ch.2)
•  divide the problem into a number of subproblems
•  conquer the subproblems (solve them)
•  combine the subproblem solutions to get the solution to the

original problem

Example: Merge Sort
•  divide the n-element sequence to be sorted into two n/2-element

sequences.
•  conquer the subproblems recursively using merge sort.
•  combine the resulting two sorted n/2-element sequences by

merging.

Merge-Sort(A,p,r)
1.   if p < r then
2.   q ← ⎣(p+r)/2⎦
3.   Merge-Sort (A,p,q)
4.   Merge-Sort (A,q+1,r)
5.   Merge (A,p,q,r)

Merge(A,p,q,r)
1.   n1← q-p+1; n2← r-q;
2.   Create arrays

L[1...n1+1] and
R[1...n2+1]

3.   for i← 1 to n1
4.   L[i]← A[p+i-1]
5.   for i← 1 to n2
6.   R[i]← A[q+i]
7.   L[n1+1] = R[n2+1] = ∞
8.   i ← j ← 1
9.   for k ← p to r
10.   if L[i] ≤ R[j]
11.   A[k]← L[i]
12.   i ← i+1
13.   else A[k]← R[j]
14.   j ← j+1

The Merge subroutine
takes θ(n) time to merge n
elements that are divided
into two sorted arrays of
n/2 elements each.

Initial call:
Merge-sort(A,1,length(A))

Analyzing Merge-Sort

2 8 1 5 4 3 7 6

2 8 1 5 4 3 7 6

2 8 1 5 4 3 7 6

2 8 1 5 4 3 7 6

Divide
(lgn levels)

D(n) = θ(1)

Analyzing Merge-Sort

1 2 3 4 5 6 7 8

1 2 5 8 3 4 6 7

2 8 1 5 3 4 6 7

2 8 1 5 4 3 7 6

C(n) = θ(n)

θ(1) if n = 1
2T(n/2) + θ(n) otherwise

T(n) =

Recurrence for worst-case running time for Merge-Sort

Merge
(lgn levels)

Analyzing Merge-Sort

θ(1) if n = 1
2T(n/2) + θ(n) otherwise

T(n) =

Recurrence for worst-case running time for Merge-Sort

•  a = 2 (two subproblems)
•  n/b = n/2 (each subproblem has size approx. n/2)
•  D(n) = θ(1) (just compute midpoint of array)
•  C(n) = θ(n) (merging can be done by scanning sorted subarrays)

aT(n/b) + D(n) + C(n)

Recursion Tree for Merge-Sort

c if n = 1
2T(n/2) + cn otherwise

T(n) =

Recurrence for worst-case running time of Merge-Sort

cn cn

cn/2 cn/2 cn

cn/4 cncn/4cn/4cn/4

c c c c c c cc cn

cnlgn + cn

lgn + 1 levels
 (h = lgn)

9/18/19

4

Solving Recurrences: Master Method (§4.3)
The master method provides a 'cookbook' method for solving
recurrences of a certain form.

Master Theorem: Let a ≥ 1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + f(n)

Then, T(n) can be bounded asymptotically as follows:

1.  T(n) = θ(nlogba) if f(n) = O(nlogba-ε) for some constant ε > 0
2.  T(n) = θ(nlogbalgn) if f(n) = θ(nlogba)
3.  T(n) = θ(f(n)) if f(n) = Ω(nlogba+ε) for some constant ε > 0

Where a is the number of subproblems, n/b is the size of each
subproblem, and f(n) is the time to divide or combine data.

Master Method Restated

Master Theorem: If T(n) = aT(n/b) + O(nd) for some constants
a ≥ 1, b > 1, d ≥ 0, then

 θ(nlogba) if d < logba (a > bd)
 T(n) = θ(ndlgn) if d = logba (a = bd)

 θ(nd) if d > logba (a < bd)

 Why? The proof uses a recursion tree argument (given in our
textbook).

Alternate Version of Master Method
Master Theorem: Let a ≥ 1, b > 1, k≥0 be constants, let p be a
real number, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + θ(nklogPn)

Then, T(n) can be bounded asymptotically as follows:

1.  If a > bk , then T(n) = θ(nlogba)
2.  If a = bk, then ���

a) If p > -1, then T(n) = θ(nlogba logp+1n) ���
b) If p = -1, then T(n) = θ(nlogba loglogn) ���
c) If p < -1, then T(n) = θ(nlogba)

3.  If a < bk, then ���
a) If p ≥ 0, then T(n) = θ(nk logpn) ���
b) If p < 0, then T(n) = θ(nk) ���

Solving Recurrences: Master Method

Example: T(n) = 9T(n/3) + n

•  a = 9, b = 3, f(n) = n, nlogba = nlog39 = n2

•  compare f(n) = n with n2

n = O(n2 -ε) (so f(n) is polynomially smaller than nlogba)
•  case 1 applies: T(n) ∈ θ(n2)

•  a = 1, b = 2, f(n) = 1, nlogba = nlog21 = n0 = 1
•  compare f(n) = 1 with 1

1 = θ(n0) (so f(n) is polynomially equal to nlogba)
•  case 2 applies: T(n) ∈ θ(n0lgn) ∈ θ(lgn)

Example: T(n) = T(n/2) + 1

Solving Recurrences: Alt. Master Method

Example 1a: T(n) = 9T(n/3) + n

•  a = 9, b = 3, k = 1, p = 0, log39 = 2
•  compare a = 9 with bk = 31 = 3

9 > 3
•  case 1 applies: T(n) ∈ θ(nlog39) ∈ θ(n2)

•  a = 1, b = 2, k = 0, p = 0, and log21 = 0
•  compare a = 1 with bk = 20 = 1���

a = b0 because 1 = 1
•  since p > −1, case 2(a) applies: T(n) ∈ θ(nlog21lgn) = (n0lgp+1n) ���

= (lg1n) ∈ θ(lgn)

Example 2a: T(n) = T(n/2) + 1

Solving Recurrences: Master Method

 Example: T(n) = T(n/2) + n2

•  a = 1, b = 2, f(n) = n2, nlogba = nlog21 = n0 = 1
•  compare f(n) = n2 with 1

 n2 = Ω(n0+ε) (so f(n) is polynomially larger)
•  Since f(n) is a polynomial in n, case 3 holds, T(n) ∈ θ(n2)

Example: T(n) = 4T(n/2) + n2

•  a = 4, b = 2, f(n) = n2, nlogba = nlog24 = n2

•  compare f(n) = n2 with n2

 n2 = θ(n2) (so f(n) is polynomially equal)
•  Case 2 holds and T(n) ∈ θ(n2lgn)

9/18/19

5

Solving Recurrences: Alt. Master Method

 Example: T(n) = T(n/2) + n2

•  a = 1, b = 2, k = 2, p = 0, and nlog21=n0

•  compare a = 1 with b = 2k, where k = 2

 1 < 4
•  Since p ≥ 0, case 3a) applies and T(n) = θ(n2log0n) ∈ θ(n2)

Example: T(n) = 4T(n/2) + n2

•  a = 4, b = 2, k = 2, p = 0, and nlog24 = n2

•  compare a = 4 with bk = 22 = 4
 4 = 4

•  Since p > −1, case 2a) applies and T(n) = θ(nlog24log1n)
∈ θ(n2logn)

Solving Recurrences: Master Method

Example: T(n) = 7T(n/2) + n2

Example: T(n) = 7T(n/3) + n2

•  a = 7, b = 3, f(n) = n2, nlogba = nlog37 = n1+ ε

•  compare f(n) = n2 with n1+ ε

 n2 = Ω(n1+ε) (so f(n) is polynomially larger)
•  Since f(n) is a polynomial in n, case 3 holds and T(n) ∈ θ(n2)

•  a = 7, b = 2, f(n) = n2, nlogba = nlog27 = n2+ ε

•  compare f(n) = n2 with n2+ ε

 n2 = O(n2+ε) (so f(n) is polynomially smaller)
•  Case 1 holds and T(n) ∈ θ(nlog27)

Solving Recurrences: Alt. Master Method

Example: T(n) = 7T(n/2) + n2

Example: T(n) = 7T(n/3) + n2

•  a = 7, b = 3, k=2, p = 0, and nlogba= nlog37 = n1+ε

•  compare a = 7 with bk = 32, 7 < 9
•  Since p ≥ 0, case 3a) holds and T(n) ∈ θ(n2log0n)
 θ(n2)

•  a = 7, b = 2, k = 2, p = 0, nlogba = nlog27 = n1+ε

•  compare a = 7 with bk = 22, a > b because 7 > 4
•  Case 1 holds and T(n) ∈ θ(nlog27)

