
2/3/20

1

CMPU241 Analysis of Algorithms

Proofs of Algorithm Correctness

Using Loop Invariants

To prove an algorithm is correct, you
need to know how the algorithm
transforms input to output.

E.g., an algorithm to find the maximum
value element in a set of totally
ordered data is correct if its output is
the largest number in the set.

What outcome is correct if you are
running a sorting algorithm on a set
of comparable data elements?

All the elements are in some
specified ordering, commonly
ascending order.

What outcome is correct if you are
running a sorting algorithm on a set
of comparable data elements?

All the elements are in some sorted
order (increasing or decreasing).

A loop invariant generally refers to the
actions inside a loop, starts by showing that
the initial condition or basis fits some
criteria, and argues that consecutive
iterations of the loop uphold these criteria.
We will generally use proof by induction on
the number of loop iterations. specifically on
the loop counter variable.

The algorithms we study terminate, so we
need to show that the ending value of the
loop counter upholds the invariant and also
why that means the algorithm is correct.

 FindMax(A[1…n])

1.  max = A[1]
2.  for (k = 2; k <=n; k++)
3.  if (A[k] > max)
4.  max = A[k]
5.  return max

INPUT: An array A of n comparable items

OUTPUT: The value of the maximum item in the array

2/3/20

2

Need to know:
1.  What value loop counter has at start of

algorithm and show loop invariant holds
at the start of the first iteration (basis).

2.  Assume the loop invariant holds up to
the beginning of some iteration k, where
1 < k < n (inductive hypothesis).

3.  Show the invariant holds at the start of
iteration k+1 (maintenance (ind step)).

4.  Know what loop counter equals in the
last iteration and show the invariant
holds in that iteration and that the result
is therefore correct (termination).

 FindMax(A[1…n])

1.  max = A[1]
2.  for (k = 2; k <=n; k++)
3.  if (A[k] > max)
4.  max = A[k]
5.  return max

INPUT: An array A of n comparable items

OUTPUT: The value of the maximum item in the array

State	
 a	
 loop	
 invariant	
 for	
 the	
 FindMax	
 algorithm.	
 	
 	

Proving Correctness—Insertion Sort

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—BubbleSort

BubbleSort(A) // A.length = n
(assume problem statement = that of InsertionSort)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

We need to show...
1.  … the loop invariant is true at the start of the first iteration (base

case or initialization),
2.  … the invariant remains true for the next k <= n iterations (inductive

hypothesis (IHOP) or maintenance), and
3.  …the algorithm has the correct result when the loop terminates.

