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CMPU241 Analysis of Algorithms 

 
Proofs of Algorithm Correctness 

Using Loop Invariants 

To prove an algorithm is correct, you 
need to know how the algorithm 
transforms input to output. 
 
E.g., an algorithm to find the maximum 
value element in a set of totally 
ordered data is correct if its output is 
the largest number in the set.  

What outcome is correct if you are 
running a sorting algorithm on a set 
of comparable data elements? 

All the elements are in some 
specified ordering, commonly 
ascending order. 

What outcome is correct if you are 
running a sorting algorithm on a set 
of comparable data elements? 
 
All the elements are in some sorted 
order (increasing or decreasing). 

A loop invariant generally refers to the 
actions inside a loop, starts by showing that 
the initial condition or basis fits some 
criteria, and argues that consecutive 
iterations of the loop uphold these criteria. 
We will generally use proof by induction on 
the number of loop iterations. specifically on 
the loop counter variable. 

The algorithms we study terminate, so we 
need to show that the ending value of the 
loop counter upholds the invariant and also 
why that means the algorithm is correct. 

 

       FindMax(A[1…n]) 
 
 
 
 

1.   max = A[1] 
2.   for ( k = 2;  k <=n; k++) 
3.        if (A[k] > max) 
4.             max = A[k]  
5.   return max 
 

INPUT:      An array A of n comparable items 
 
OUTPUT:  The value of the maximum item in the array  
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Need to know: 
1.  What value loop counter has at start of 

algorithm and show loop invariant holds 
at the start of the first iteration (basis). 

2.  Assume the loop invariant holds up to 
the beginning of some iteration k, where 
1 < k < n (inductive hypothesis). 

3.  Show the invariant holds at the start of 
iteration k+1 (maintenance (ind step)). 

4.  Know what loop counter equals in the 
last iteration and show the invariant 
holds in that iteration and that the result 
is therefore correct (termination). 

 

       FindMax(A[1…n]) 
 
 
 
 

1.   max = A[1] 
2.   for ( k = 2;  k <=n; k++) 
3.        if (A[k] > max) 
4.             max = A[k]  
5.   return max 
 

INPUT:      An array A of n comparable items 
 
OUTPUT:  The value of the maximum item in the array  

State	
  a	
  loop	
  invariant	
  for	
  the	
  FindMax	
  algorithm.	
  	
  	
  

Proving Correctness—Insertion Sort 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—BubbleSort 

BubbleSort(A)    // A.length = n 
(assume problem statement = that of InsertionSort) 
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.                swap A[j] with A[j-1] 

We need to show...  
1.  … the loop invariant is true at the start of the first iteration (base 

case or initialization), 
2.  … the invariant remains true for the next k <= n iterations (inductive 

hypothesis (IHOP) or maintenance), and 
3.  …the algorithm has the correct result when the loop terminates. 


