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QuickSort (Ch. 7) 

A divide-and-conquer algorithm 
 

Divide:  Rearrange the array A[1..n] into two (one possibly 

empty) subarrays A[1..q-1] and A[q+1..n] such that each 

element of A[1..q-1] ≤ A[q] and each element of A[q+1..n] > 

A[q] after computation of index q. 
 

Conquer:  Sort the two subarrays A[1..q-1] and A[q+1..n] 

recursively. 
 

Combine:  No work is needed to combine subarrays since 

they are sorted in-place. 

QuickSort 

Quicksort(A, p, r) 
1. if p < r 
2.      q = Partition(A, p, r) 
3.      Quicksort(A, p, q-1) 
4.      Quicksort(A, q+1, r) 

Input:    An n-element array A (unsorted). 
Output: An n-element array A in non-decreasing order. 

Partition(A, p, r) 
1. x = A[ r ]  // choose pivot 
2. i = p - 1 
3. for j = p to r - 1 
4.       if A[ j ] ≤ x 
5.              i =  i + 1 
6.              swap A[ i ] and A[ j ]     
7.  swap A[ i+1 ] and  A[ r ] 
8.  return i + 1 

Initial call: 
Quicksort(A, 1, A.length) 

What does Partition do?   Divides the array around x. 
What is running time of Partition?  Linear 

Divide:  Rearrange the array A[p..r] into two (one possibly empty) 
subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] ≤ 
A[q] and each element of A[q+1..r] > A[q] after computation of index q. 

Correctness of Quicksort

Claim:  Partition satisfies the specifications of the Divide step.     
 
Loop invariant:  At the beginning  
of each iteration of the for loop  
(lines 3-6), for any array index k, 
 

1.  If p ≤  k ≤  i, then A[k] ≤  x. 
2.  If i+1 ≤  k ≤  j-1, then A[k] > x. 
3.  If k=r, then A[k] = x. 

Partition(A, p, r)
1. x = A[r]  // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.       if A[ j ] ≤ x
5.            i =  i + 1
6.            swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and A[ r ]
8.  return i + 1

Initialization:  i = p-1 = 0 and j = p = 1.  k cannot be 
between 0 and 1 (cond 1), nor can k be between  i+1 = 1 
and j - 1 = 0 (cond 2). Partition satisfies condition 3 in this 
case, and conditions 1 and 2 are vacuously true.

Inductive Hypothesis:  Assume the invariant holds 
through iteration j = k < n -1.

Loop invariant:  At the beginning of each iteration of the 
for loop (lines 3-6), for any array index k,

1.  If p ≤  k ≤  i, then A[k] ≤  x.
2.  If i+1 ≤  k ≤  j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

Partition(A, p, r)
1. x = A[r]  // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.       if A[ j ] ≤ x
5.              i =  i + 1
6.              swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and A[ r ]
8.  return i + 1

Ind. Step:  At the start of iteration k+1, either A[ j ] > x or A[ j ] ≤  x.  If 
A[ j ] > x, j is incremented and cond 2 holds for A[ j-1 ] with no other 
changes.  If A[ j ] ≤  x, A[ i+1 ] and A[ j ] are swapped, and then j is 
incremented. Cond 1 holds for A[ i ] after swap by the IH.  By the IH, the 
item in A[ j ] was in A[ i+1 ] during the last iteration, and was > x then, 
so cond. 2 holds at the end of iteration k+1.

Termination:  At termination, j = r and A has been partitioned into 3 
sets:  items ≤  x, items > x, and A[ j ] = x. The item in A[i+1] > x in the 
last iteration, so it remains > x at termination, when it is swapped with 
the element in A[r] = x.   QED

Partition(A, p, r)
1. x = A[r]  // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.       if A[ j ] ≤ x
5.          i =  i + 1
6.          swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and A[ r ]
8.  return i + 1

Loop invariant:  At the beginning of each iteration of the 
for loop (lines 3-6), for any array index k,

1.  If p ≤  k ≤  i, then A[k] ≤  x.
2.  If i+1 ≤  k ≤  j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

So at the end of the algorithm, A is split into 3 parts, from left to right: 
items in A[1...i] that are ≤ A[r], A[i+1] = A[r], and the items in A[i+2...n] 
that are > A[r].

Therefore, the item in position A[i+1] = A[q] is in its proper sorted 
position after the first iteration, Partition(A, 1, n).  The Quick-Sort 
algorithm then makes recursive calls on A[1...q-1] and A[q+1...n].

Partition(A, p, r)
1. x = A[r]  // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.       if A[ j ] ≤ x
5.          i =  i + 1
6.          swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and A[ r ]
8.  return i + 1

Loop invariant:  At the beginning of each iteration of the 
for loop (lines 3-6), for any array index k,

1.  If p ≤  k ≤  i, then A[k] ≤  x.
2.  If i+1 ≤  k ≤  j-1, then A[k] > x.
3.  If k=r, then A[k] = x.
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Quicksort Running Time 
    T(n) = T(q - p) + T(r - q) + O(n)  

 

 
The value of T(n) depends on the location of q in the array 
A[p..r]. 
 
Since we don't know this in advance, we must look at 
worst-case, best-case, and average-case partitioning. 
 

Quicksort Running Time 
 
Worst-case partitioning:  Each partition results in a 0 : n-1 
split T(0) = θ(1) and the partitioning costs θ(n), so the 
recurrence is 
 

 T(n) = T(n-1) + T(0) + θ(n) = T(n-1) + θ(n) 
 

θ(n2) This is an arithmetic series which evaluates to         .  So  
worst-case for Quicksort is no better than Insertion sort! 
 
What does the input look like in Quicksort's worst-case? 

Quicksort Best-case 
T(n) = T(q - p) + T(r - q) + O(n) 

 
Best-case partitioning:  Each partition results in a ⎣n/2⎦ : ⎡n/2⎤ -1  
split (i.e., close to balanced split each time), so recurrence is 
 

    T(n) = 2T(n/2) + θ(n) 
 
By the master theorem, this recurrence evaluates to             
 θ(nlgn)          

Quicksort Average-case
Intuition:  Some splits will be close to balanced and others close to 
unbalanced ⇒  good and bad splits will be randomly distributed in 
recursion tree.

The running time will be (asymptotically) bad only if there are many 
bad splits in a row.

•  A bad split followed by a good split results in a good partitioning
after one extra step. 

•  Implies a θ(nlgn)  running time (with a larger constant factor to 
ignore than if all splits were good).

Randomized Quicksort 
How can we modify Quicksort to get good average case behavior on 
all inputs?  Answer:  Randomization! 
 

2 techniques: 
 

1.  randomly permute input prior to running Quicksort.  Will produce 
 tree of possible executions, most of them finish fast. 

 

2.  choose partition randomly at each iteration instead of choosing 
 element in highest array position. 

Randomized-Partition(A, p, r)
1. i = Random(p, r)
2. swap A[r] ↔ A[i]
3. return Partition(A, p, r)

In section 7.4, a probabilistic analysis  
is presented, showing that the expected  
running time of Randomized-Quicksort  
is O(nlgn) 

Sorting Algorithms 

•  A sorting algorithm is comparison-based if the only operation we 
can perform on keys is to compare them. 

•  A sorting algorithm is in place if only a constant number of 
elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

Insertion Sort     n2 
     n2           n 
       yes

Merge Sort 
    nlgn          nlgn        nlgn   
no

Heap Sort        nlgn          nlgn        nlgn          yes

Quick Sort        n2            nlgn        nlgn          yes


  worst-case average-case best-case      in place?


