
1/4/20

1

QuickSort (Ch. 7)

A divide-and-conquer algorithm

Divide: Rearrange the array A[1..n] into two (one possibly

empty) subarrays A[1..q-1] and A[q+1..n] such that each

element of A[1..q-1] ≤ A[q] and each element of A[q+1..n] >

A[q] after computation of index q.

Conquer: Sort the two subarrays A[1..q-1] and A[q+1..n]

recursively.

Combine: No work is needed to combine subarrays since

they are sorted in-place.

QuickSort

Quicksort(A, p, r)
1. if p < r
2. q = Partition(A, p, r)
3. Quicksort(A, p, q-1)
4. Quicksort(A, q+1, r)

Input: An n-element array A (unsorted).
Output: An n-element array A in non-decreasing order.

Partition(A, p, r)
1. x = A[r] // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.  if A[j] ≤ x
5.  i = i + 1
6.  swap A[i] and A[j]
7.  swap A[i+1] and A[r]
8.  return i + 1

Initial call:
Quicksort(A, 1, A.length)

What does Partition do? Divides the array around x.
What is running time of Partition? Linear

Divide: Rearrange the array A[p..r] into two (one possibly empty)
subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] ≤
A[q] and each element of A[q+1..r] > A[q] after computation of index q.

Correctness of Quicksort

Claim: Partition satisfies the specifications of the Divide step.

Loop invariant: At the beginning
of each iteration of the for loop
(lines 3-6), for any array index k,

1.  If p ≤ k ≤ i, then A[k] ≤ x.
2.  If i+1 ≤ k ≤ j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

Partition(A, p, r)
1. x = A[r] // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.  if A[j] ≤ x
5.  i = i + 1
6.  swap A[i] and A[j]
7.  swap A[i+1] and A[r]
8.  return i + 1

Initialization: i = p-1 = 0 and j = p = 1. k cannot be
between 0 and 1 (cond 1), nor can k be between i+1 = 1
and j - 1 = 0 (cond 2). Partition satisfies condition 3 in this
case, and conditions 1 and 2 are vacuously true.

Inductive Hypothesis: Assume the invariant holds
through iteration j = k < n -1.

Loop invariant: At the beginning of each iteration of the
for loop (lines 3-6), for any array index k,

1.  If p ≤ k ≤ i, then A[k] ≤ x.
2.  If i+1 ≤ k ≤ j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

Partition(A, p, r)
1. x = A[r] // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.  if A[j] ≤ x
5.  i = i + 1
6.  swap A[i] and A[j]
7.  swap A[i+1] and A[r]
8.  return i + 1

Ind. Step: At the start of iteration k+1, either A[j] > x or A[j] ≤ x. If
A[j] > x, j is incremented and cond 2 holds for A[j-1] with no other
changes. If A[j] ≤ x, A[i+1] and A[j] are swapped, and then j is
incremented. Cond 1 holds for A[i] after swap by the IH. By the IH, the
item in A[j] was in A[i+1] during the last iteration, and was > x then,
so cond. 2 holds at the end of iteration k+1.

Termination: At termination, j = r and A has been partitioned into 3
sets: items ≤ x, items > x, and A[j] = x. The item in A[i+1] > x in the
last iteration, so it remains > x at termination, when it is swapped with
the element in A[r] = x. QED

Partition(A, p, r)
1. x = A[r] // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.  if A[j] ≤ x
5.  i = i + 1
6.  swap A[i] and A[j]
7.  swap A[i+1] and A[r]
8.  return i + 1

Loop invariant: At the beginning of each iteration of the
for loop (lines 3-6), for any array index k,

1.  If p ≤ k ≤ i, then A[k] ≤ x.
2.  If i+1 ≤ k ≤ j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

So at the end of the algorithm, A is split into 3 parts, from left to right:
items in A[1...i] that are ≤ A[r], A[i+1] = A[r], and the items in A[i+2...n]
that are > A[r].

Therefore, the item in position A[i+1] = A[q] is in its proper sorted
position after the first iteration, Partition(A, 1, n). The Quick-Sort
algorithm then makes recursive calls on A[1...q-1] and A[q+1...n].

Partition(A, p, r)
1. x = A[r] // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.  if A[j] ≤ x
5.  i = i + 1
6.  swap A[i] and A[j]
7.  swap A[i+1] and A[r]
8.  return i + 1

Loop invariant: At the beginning of each iteration of the
for loop (lines 3-6), for any array index k,

1.  If p ≤ k ≤ i, then A[k] ≤ x.
2.  If i+1 ≤ k ≤ j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

1/4/20

2

Quicksort Running Time
 T(n) = T(q - p) + T(r - q) + O(n)

The value of T(n) depends on the location of q in the array
A[p..r].

Since we don't know this in advance, we must look at
worst-case, best-case, and average-case partitioning.

Quicksort Running Time

Worst-case partitioning: Each partition results in a 0 : n-1
split T(0) = θ(1) and the partitioning costs θ(n), so the
recurrence is

 T(n) = T(n-1) + T(0) + θ(n) = T(n-1) + θ(n)

θ(n2) This is an arithmetic series which evaluates to . So
worst-case for Quicksort is no better than Insertion sort!

What does the input look like in Quicksort's worst-case?

Quicksort Best-case
T(n) = T(q - p) + T(r - q) + O(n)

Best-case partitioning: Each partition results in a ⎣n/2⎦ : ⎡n/2⎤ -1
split (i.e., close to balanced split each time), so recurrence is

 T(n) = 2T(n/2) + θ(n)

By the master theorem, this recurrence evaluates to
 θ(nlgn)

Quicksort Average-case
Intuition: Some splits will be close to balanced and others close to
unbalanced ⇒ good and bad splits will be randomly distributed in
recursion tree.

The running time will be (asymptotically) bad only if there are many
bad splits in a row.

•  A bad split followed by a good split results in a good partitioning
after one extra step.

•  Implies a θ(nlgn) running time (with a larger constant factor to
ignore than if all splits were good).

Randomized Quicksort
How can we modify Quicksort to get good average case behavior on
all inputs? Answer: Randomization!

2 techniques:

1. randomly permute input prior to running Quicksort. Will produce
 tree of possible executions, most of them finish fast.

2.  choose partition randomly at each iteration instead of choosing
 element in highest array position.

Randomized-Partition(A, p, r)
1. i = Random(p, r)
2. swap A[r] ↔ A[i]
3. return Partition(A, p, r)

In section 7.4, a probabilistic analysis
is presented, showing that the expected
running time of Randomized-Quicksort
is O(nlgn)

Sorting Algorithms

•  A sorting algorithm is comparison-based if the only operation we
can perform on keys is to compare them. 

•  A sorting algorithm is in place if only a constant number of
elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

Insertion Sort n2
 n2 n
 yes

Merge Sort
 nlgn nlgn nlgn
no

Heap Sort nlgn nlgn nlgn yes

Quick Sort n2 nlgn nlgn yes

 worst-case average-case best-case in place?

