
12/5/19

1

Dynamic Programming (Ch. 15)
Good solution for problems that take exponential time to solve
by brute-force methods.

Typically applied to optimization problems, where there are
many possible solutions, each solution has a particular value,
and we wish to find the solution with an optimal (minimal or
maximal) value.

For many of these problems, we must consider all subsets of
a possibly very large set, so there are 2n possible solutions --
too many to consider sequentially for large n.

Divide-and-conquer algorithms find an optimal solution
by partitioning a problem into independent subproblems,
solving the subproblems recursively, and then
combining the solutions to solve the original problem.

Dynamic programming is applicable when the sub-
problems are not independent, i.e. when they share
subsubproblems.

Dynamic Programming

Dynamic Programming
Developed by Richard Bellman in the 1950s. Not a specific algorithm,
but a technique (like divide-and-conquer).

This process takes advantage of the fact that subproblems have optimal
solutions that lead to an overall optimal solution.

DP is often useful for problems with overlapping subproblems. These
algorithms typically solve each subproblem once, record the result in a
table, and use the information from the table to solve larger problems.

Computing the nth Fibonacci number is an example of a non-
optimization problem to which dynamic programming can be applied.

 F(n) = F(n-1) + F(n-2) for n >= 2

 F(0) = 0 and F(1) = 1.

Fibonacci Numbers
A straightforward, but inefficient algorithm to compute the nth
Fibonacci number uses a top-down approach:

 RFibonacci (n)
 1. if n = 0 then return 0
 2. else if n = 1 then return 1
 3. else return RFibonacci (n-1) + RFibonacci (n-2)

This approach uses calls on the same number many times,
leading to an exponential running time.

Fibonacci Numbers

A more efficient, bottom-up approach starts with 0 and works up to n,
requiring only n values to be computed:

 Fibonacci(n)

 1. f[0] = 0
 2. f[1] = 1
 3. for i = 2 … n
 4. f[i] = f[i-1] + f[i-2]
 5. return f[n]

The technique of storing answers to smaller subproblems is one type of
bottom-up programming.

The all-pairs shortest path problem (APSP) is example where DP can help.
input: a directed graph G = (V, E) with edge weights
goal: find a minimum weight (shortest) path between every pair of

vertices in V
Can we do this with algorithms we’ve already seen, say SSSP algorithms?

All-Pairs Shortest Paths (Ch. 25)

Solution 1: run Dijkstra’s algorithm V times, once with each v ∈ V as the
source node (requires no negative-weight edges in E)

 If G is dense with an array implementation of Q
 O(V ⋅ V2) = O (V3) time
 If G is sparse with a binary heap implementation of Q
 O(V ⋅ ((V + E) logV)) = O(V2logV + VElogV) time

12/5/19

2

All-Pairs Shortest Paths
Solution 2: run the Bellman-Ford algorithm V times (negative edge
weights allowed), once from each vertex.

 O(V2E), which on a dense graph is O(V4)

Solution 3: Use an algorithm designed for the APSP problem.

 E.g., Floyd's Algorithm (also allows negative edge weights)

 introduces a dynamic programming technique that
 uses an adjacency matrix representation of G = (V, E)

Floyd's algorithm uses the notion that all shortest paths are composed of
shortest sub-paths.

Warshall's Transitive Closure Algorithm
Input: Adjacency matrix A of G as matrix of 1s and 0's
Output: Transitive Closure (reachability matrix) R(n) of G

Solution for R(n):
Define rij

(k) as the element in the ith row and jth column to be 1 iff there is
a path between vertices i and j using only vertices numbered ≤ k.
R(0) = A, original adjacency matrix (only 1's in matrix are direct edges)
R(n) = the matrix we want to compute

R(k)’s elements are: R(k)[i, j] = rij
(k) = rij

(k-1) ∨ (rik
(k-1) ∧ rkj

(k-1))

Assumes vertices are numbered 1 to |V|, |V| = n and there are no edge
weights. Finds a series of boolean matrices R(0), …, R(n)

Lowercase r is element in matrix and capital R is entire matrix.

Warshall's Algorithm

 1

 2 3

0 1 1
0 0 1
1 0 0

R(0) = A =

Matrix R(0) contains the nodes reachable in one hop

For R(1), there is a 1 in row 3, col 1 and there are 1s in
row 1, columns 2 and 3, so put 1s in positions 3,2 and
3,3.

Warshall's Algorithm

 1

 2 3

0 1 1
0 0 1
1 1 1

R(1) =

Matrix R(1) contains the nodes reachable in one hop or
on 2 hop paths that go through vertex 1.

For R(2), there is no change because 1 can get to 3
through 2 but there is already a direct path between 1
and 3.

Warshall's Algorithm

 1

 2 3

0 1 1
0 0 1
1 1 1

R(2) =

Matrix R(2) contains the nodes reachable in one hop or
on paths that go through vertices 1 or 2.

For R(3), there is a 1 in row 1, col 3 and col 1, row 3,
so put a 1 in position 1,1. Also, there is a 1 in row 2,
col 3 and col 2, row 3, so put a 1 in position 2,1. Also,
there is a 1 in row 2, col 3 and col 2, row 3, so put a 1
in position 2,2.

12/5/19

3

Warshall's Algorithm

 1

 2 3

1 1 1
1 1 1
1 1 1

R(3) =

Matrix R(3) contains the vertices reachable in one hop
or on paths that go through vertices 1, 2, and 3.

Warshall's Algorithm

Warshall (A[1…n,1…n])
1. n = rows[A]
2. R(0) = A
3. for k = 1 to n do
4. for i = 1 to n do
5. for j = 1 to n do

6. Rij
(k) = Rij

(k-1) V Rik
(k-1) ∧ Rkj

(k-1)
7. return R(n)

Time efficiency?

Space efficiency?

Floyd's APSP Algorithm
Input: Adjacency matrix A
Output: Shortest path matrix D(n)
 and predecessor matrix Π(n)

Relies on the Optimal Substructure Property:
 All sub-paths of a shortest path are shortest paths.

Observation: When G contains no
negative-weight cycles, all shortest
paths consist of at most |V| – 1 edges

Solution for D:
Define D(k)[i, j] = dij

(k) as the minimum weight of any path from vertex i to
vertex j, such that all intermediate vertices are in {1, 2, 3, ..., k}
D(0) = A, original adjacency matrix (only paths are single edges)
D(n) the matrix we want to compute
D(k)’s elements are: D(k)[i, j] = dij

(k) = min(dij
(k-1), dik

(k-1) + dkj
(k-1))

Assumes vertices are numbered 1 to |V|

Recursive Solution for D(k)

ji

k

dij
(k-1)

dik
(k-1) dkj

(k-1)

The only intermediate nodes on the paths from i to j, i to k or k to j are in
the set of vertices {1, 2, 3, ..., k-1}.
If k is included in shortest i to j path, then a shortest path has been found
that includes k.
If k is not included in shortest i to j path, then the shortest path still only
includes vertices in the set 1…k-1.

D(k)[i, j] = dij
(k) = min(dij

(k-1), dik
(k-1) + dkj

(k-1))

12/5/19

4

Floyd's APSP Algorithm
Use adjacency matrix A for G = (V, E):

 w(i, j) if (i,j) ∈ E
 A[i, j] = aij = 0 if i = j
 ∞ if i ≠ j and (i, j) ∉ E

1

2

3

4

5
-1

4

3
6

-2

9
2

46

80 2 -1 ∞ ∞

∞ 0 8 ∞ 9
∞ ∞ 0 6 3
4 ∞ ∞ 0 4
∞ 6 ∞ -2 0

1 2 3 4 5
1
2
3
4
5

Floyd's APSP Algorithm
Use adjacency matrix Π to keep track of predecessors:

 π(0)

ij = i if i ≠ j and w(i,j) < ∞
 Ø if i = j or w(i, j) = ∞

1

2

3

4

5
-1

4

3
6

-2

9
2

46

8Ø 1 1 Ø Ø

Ø Ø 2 Ø 2
Ø Ø Ø 3 3
4 Ø Ø Ø 4
Ø 5 Ø 5 Ø

1 2 3 4 5
1
2
3
4
5

πij is predecessor of j on some shortest
path from i

Floyd's APSP Algorithm

Floyd-Warshall-APSP(A)
 1. n = A.rows
 2. D(0) = A
 3. for k = 1 to n
 4. let D(k) = be new n × n matrix
 5. let Π(k) = be new n × n matrix
 6. for i = 1 to n
 7. for j = 1 to n
 8. if dij

(k) > dik
(k-1) + dkj

(k-1)
 9. dij

(k) = dik
(k-1) + dkj

(k-1)
10. πij

(k) = πkj
(k-1)

11. else πij
(k) = πij

(k-1)
12. return D(n) and Π(n)

Time efficiency?

Space efficiency?

Floyd's Simplified APSP Algorithm

Floyd-Warshall-APSP(D,Π)
 1. n = D.rows
 2. for k = 1 to n
 3. for i = 1 to n
 4. for j = 1 to n
 5. if d[i][j] > d[i][k] + d[k][j]
 6. d[i][j] = d[i][k] + d[k][j]
 7. π[i][j]= π[k][j]
 8. return D and Π

Operation of F-APSP Algorithm

 1

 2 3

6
411

3
2

0 4 11
6 0 2
3 ∞ 0

D(0) = A =

∅ 1 1
2 ∅ 2
3 ∅ ∅

∏(0) =

7

1

3->1, 1->2 = 7

Operation of F-APSP Algorithm

 1

 2 3

6
411

3
2

∅ 1 1
2 ∅ 2
3 1 ∅

∏(1) =

0 4 11
6 0 2
3 7 0

D(1) =
6

2

1->2, 2->3 = 6

12/5/19

5

0 4 6
6 0 2
3 7 0

Operation of F-APSP Algorithm

 1

 2 3

6
411

3
2

∅ 1 2
2 ∅ 2
3 1 ∅

∏(2) =

D(2) =
5

3

2->3, 3->1 = 5

Printing the shortest path
 1

 2 3

6
411

3
2

∅ 1 2
3 ∅ 2
3 1 ∅

∏(3)

0 4 6
5 0 2
3 7 0

D(3)

Print-path(p, i, j) // p is predecessor matrix π
 1. if i != j
 2. Print-path(p, i, p[i] [j])
 3. print j

Print-APSP(p, i, j) // p is predecessor matrix π
 1. if i = j
 2. print i
 3. else if p[i][j] = NIL
 4. print "no path from ”+ i + " to ”+ j + “ exists”
 5. else
 6. Print-APSP(p, i, p[i][j])
 7. print j

Printing the shortest path
Print-APSP(p, i, j) // p is predecessor matrix π
 1. if i = j
 2. print i
 3. else if p[i][j] = NIL
 4. print "no path from ”+ i + " to ”+ j + “ exists”
 5. else
 6. Print-APSP(p, i, p[i][j])
 7. print j

0 4 6
6 0 2
3 7 0

Operation of F-APSP Algorithm

 1

 2 3

6
411

3
2

0 4 11
6 0 2
3 ∞ 0

D(0) = A =

0 4 11
6 0 2
3 7 0

D(1) D(2)

2→ 3 → 1

0 4 6
5 0 2
3 7 0

D(3)

3→ 1 → 2 1→ 2 → 3

F-APSP Algorithm

0 3 8 -4 ∞

∞ 0 ∞ 7 1
∞ 4 0 ∞ ∞

∞ ∞ ∞ 0 6
2 ∞ -5 ∞ 0

D(0) = A =

0 3 8 -4 ∞

∞ 0 ∞ 7 1
∞ 4 0 ∞ ∞

∞ ∞ ∞ 0 6
2 5 -5 -2 0

D(1) =

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened squares
represent shorter paths
through vertex 1.
5à1à2, 5à1à4

Then look at all paths
that go through vertex 2.

∅ 1 1 1 ∅

∅ ∅ ∅ 2 2
∅ 3 ∅ ∅ ∅

∅ ∅ ∅ ∅ 4
5 1 5 1 ∅

π(0) = A =

π(1) =

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 1 2 1
∅ ∅ ∅ 2 2
∅ 3 ∅ 2 2
∅ ∅ ∅ ∅ 4
5 1 5 1 ∅

FW-APSP Algorithm

Shorter paths through 2

Shorter paths through 1

12/5/19

6

0 3 8 -4 4
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 5 -5 -2 0

D(2) =

F-APSP Algorithm

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened squares
represent shorter paths
through vertex 2.
1à2à5; 3à2à4;
3à2à5

Then look at all paths
that go through vertex 3.

0 3 8 -4 4
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 -1 -5 -2 0

D(3) =

F-APSP Algorithm

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

D(3) is all direct routes or routes
through nodes 1, 2, and 3.

The darkened square
represents a shorter path
through vertex 3.
 5à3à2

Then look at all paths
that go through vertex 4.

0 3 8 -4 2
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 -1 -5 -2 0

D(4) =

F-APSP Algorithm

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened square
represents a shorter path
through vertex 4.
1à4à5

D(4) is all direct routes or routes
through nodes 1, 2, 3, and 4.

Then look at all paths
that go through vertex 5.

0 1 -3 -4 2
3 0 -4 -1 1
7 4 0 3 5
8 5 1 0 6
2 -1 -5 -2 0

D(5) =

F-APSP Algorithm

1à4à5à3à2, 1à4à5à3

2à5à1, 2à5à3, 2à5à1à4

3à2à5à1, 3à2à5à1à4

4à5à1, 4à5à3à2, 4à5à3

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened squares
represent shorter paths
through vertices 1...5.

0 3 8 ∞ -4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ -5 0 ∞

∞ ∞ ∞ 6 0

D(0) = D =

0 3 8 ∞ -4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 5 -5 0 -2
∞ ∞ ∞ 6 0

D(1) =

4 à 1 à 5 = -2

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

4 à 1 à 2 = 5

1 à 2 à 4 = 4

3 à 2 à 4 = 5
3 à 2 à 5 = 11

FW-APSP Algorithm

0 3 8 4 -4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 -5 0 -2
∞ ∞ ∞ 6 0

D(2) =

F-APSP Algorithm

4 à 3 à 2 = -1

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

12/5/19

7

π(2) =

F-APSP Algorithm

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 1 2 1
∅ ∅ ∅ 2 2
∅ 3 ∅ 2 2
4 1 4 ∅ 1
∅ ∅ ∅ 5 ∅

Shorter path through 3

D(3) =

F-APSP Algorithm

 2 à 4 à 1 = 3
 3 à 2 à 4 à 1 = 7

0 3 8 4 -4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 -1 -5 0 -2
∞ ∞ ∞ 6 0

 2 à 4 à 3 = -4
 1 à 2 à 4 à 3 = -1

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

 2 à 4 à 1 à 5 = -1
 3 à 2 à 4 à 1 à 5 = 3

 5 à 4 à 1 = 8
 5 à 4 à 3 à 2 = 5
 5 à 4 à 3 = 1

D(3) =

F-APSP Algorithm

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 1 2 1
∅ ∅ ∅ 2 2
∅ 3 ∅ 2 2
4 3 4 ∅ 1
∅ ∅ ∅ 5 ∅

Shorter paths through 4
D(4) =

F-APSP Algorithm

1 à 5 à 4 = 2
1 à 5 à 4 à 3 = -3
1 à 5 à 4 à 3 à 2 = 1

0 3 -1 4 -4
3 0 -4 1 7
7 4 0 5 11
2 -1 -5 0 -2
8 5 1 6 0

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

π(4) =

F-APSP Algorithm

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 4 2 1
4 ∅ 4 2 1
4 3 ∅ 2 1
4 3 4 ∅ 1
4 3 4 5 ∅

Shorter paths through 5 D(5) =

F-APSP Algorithm

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

0 1 -3 2 -4
3 0 -4 1 7
7 4 0 5 11
2 -1 -5 0 -2
8 5 1 6 0

12/5/19

8

π(5) =

F-APSP Algorithm

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 3 4 5 1
4 ∅ 4 2 1
4 3 ∅ 2 1
4 3 4 ∅ 1
4 3 4 5 ∅

 Running Time of Floyd's-APSP

Lines 3 – 6: |V3| time for triply-nested for loops

 Overall running time = θ(V3)

The code is tight, with no elaborate data structures
and so the constant hidden in the θ-notation is small.

Much better than exponential time! So big win!

