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Dynamic Programming (Ch. 15) 
Good solution for problems that take exponential time to solve 
by brute-force methods. 
 
Typically applied to optimization problems, where there are 
many possible solutions, each solution has a particular value, 
and we wish to find the solution with an optimal (minimal or 
maximal) value. 
 
For many of these problems, we must consider all subsets of 
a possibly very large set, so there are 2n possible solutions -- 
too many to consider sequentially for large n. 
 

Divide-and-conquer algorithms find an optimal solution 
by partitioning a problem into independent subproblems, 
solving the subproblems recursively, and then 
combining the solutions to solve the original problem. 
 
Dynamic programming is applicable when the sub-
problems are not independent, i.e. when they share 
subsubproblems. 

Dynamic Programming 

Dynamic Programming 
Developed by Richard Bellman in the 1950s. Not a specific algorithm, 
but a technique (like divide-and-conquer).  
 
This process takes advantage of the fact that subproblems have optimal 
solutions that lead to an overall optimal solution. 
 
DP is often useful for problems with overlapping subproblems.  These 
algorithms typically solve each subproblem once, record the result in a 
table, and use the information from the table to solve larger problems. 
 
Computing the nth Fibonacci number is an example of a non-
optimization problem to which dynamic programming can be applied.   
 
       F(n) = F(n-1) + F(n-2) for n >= 2 
 

  F(0) = 0 and F(1) = 1. 

Fibonacci Numbers 
A straightforward, but inefficient algorithm to compute the nth 
Fibonacci number uses a top-down approach: 
 
     RFibonacci (n) 
    1.  if n = 0 then return 0 
    2.  else if n = 1 then return 1 
    3.  else return RFibonacci (n-1) + RFibonacci (n-2) 
 
This approach uses calls on the same number many times, 
leading to an exponential running time. 
 
  

Fibonacci Numbers 
 
A more efficient, bottom-up approach starts with 0 and works up to n, 
requiring only n values to be computed: 
 
     Fibonacci(n) 

     1. f[0] = 0 
     2. f[1] = 1 
     3. for  i = 2 … n 
     4.      f[i] = f[i-1] + f[i-2] 
     5. return f[n] 

 
The technique of storing answers to smaller subproblems is one type of 
bottom-up programming. 
    

The all-pairs shortest path problem (APSP) is example where DP can help. 
input: a directed graph G = (V, E) with edge weights 
goal:   find a minimum weight (shortest) path between every pair  of 

vertices in V 
Can we do this with algorithms we’ve already seen, say SSSP algorithms? 

All-Pairs Shortest Paths (Ch. 25) 

Solution 1:  run Dijkstra’s algorithm V times, once with each v ∈ V as the 
source node (requires no negative-weight edges in E) 

 If G is dense with an array implementation of Q 
  O(V ⋅ V2)  = O (V3) time 
 If G is sparse with a binary heap implementation of Q 
  O(V ⋅ ((V + E) logV)) = O(V2logV + VElogV) time 
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All-Pairs Shortest Paths 
Solution 2:  run the Bellman-Ford algorithm V times (negative edge 
weights allowed), once from each vertex. 

 O(V2E), which on a dense graph is O(V4) 

Solution 3:  Use an algorithm designed for the APSP problem. 
 
 E.g., Floyd's Algorithm (also allows negative edge weights) 

 introduces a dynamic programming technique that 
 uses an adjacency matrix representation of G = (V, E) 

Floyd's algorithm uses the notion that all shortest paths are composed of 
shortest sub-paths. 

Warshall's Transitive Closure Algorithm 
Input:  Adjacency matrix A of G as matrix of 1s and 0's 
Output:  Transitive Closure (reachability matrix) R(n) of G  

Solution for R(n):  
Define rij

(k) as the element in the ith row and jth column to be 1 iff there is 
a path between vertices i and j using only vertices numbered ≤ k.  
R(0)  =  A, original adjacency matrix (only 1's in matrix are direct edges) 
R(n)  =  the matrix we want to compute  

R(k)’s elements are: R(k)[i, j] = rij
(k) = rij

(k-1) ∨  ( rik
(k-1) ∧ rkj

(k-1) ) 

Assumes vertices are numbered 1 to |V|, |V| = n and there are no edge 
weights.  Finds a series of boolean matrices R(0), …, R(n) 

Lowercase  r  is element in matrix and capital R is entire matrix. 
 

Warshall's Algorithm 

 1

 2 3

0 1 1
0 0 1
1 0 0

R(0) = A =

Matrix R(0) contains the nodes reachable in one hop 
 
For R(1), there is a 1 in row 3, col 1 and there are 1s in 
row 1, columns 2 and 3, so put 1s in positions 3,2 and 
3,3. 

Warshall's Algorithm 

 1

 2 3

0 1 1
0 0 1
1 1 1

R(1) =

Matrix R(1) contains the nodes reachable in one hop or 
on 2 hop paths that go through vertex 1. 
 
For R(2), there is no change because 1 can get to 3 
through 2 but there is already a direct path between 1 
and 3.  

Warshall's Algorithm 

 1

 2 3

0 1 1
0 0 1
1 1 1

R(2) =

Matrix R(2) contains the nodes reachable in one hop or 
on paths that go through vertices 1 or 2. 
 
For R(3), there is a 1 in row 1, col 3 and col 1, row 3, 
so put a 1 in position 1,1.  Also, there is a 1 in row 2, 
col 3 and col 2, row 3, so put a 1 in position 2,1.  Also, 
there is a 1 in row 2, col 3 and col 2, row 3, so put a 1 
in position 2,2.  
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Warshall's Algorithm 

 1

 2 3

1 1 1
1 1 1
1 1 1

R(3) =

Matrix R(3) contains the vertices reachable in one hop 
or on paths that go through vertices 1, 2, and 3. 

Warshall's Algorithm 

Warshall (A[1…n,1…n]) 
1.  n = rows[A] 
2.  R(0) = A 
3.  for k = 1 to n  do 
4.       for i = 1 to n do 
5.             for j = 1 to n do 

6.                  Rij
(k) = Rij

(k-1) V Rik
(k-1) ∧ Rkj

(k-1)  
7.  return R(n)  
 

Time efficiency? 

Space efficiency?

Floyd's APSP Algorithm 
Input:  Adjacency matrix A 
Output:  Shortest path matrix D(n) 
    and predecessor matrix Π(n)  

Relies on the Optimal Substructure Property: 
  All sub-paths of a shortest path are shortest paths. 

Observation:  When G contains no 
negative-weight cycles, all shortest 
paths consist of at most |V| – 1 edges 

Solution for D:  
Define D(k)[i, j] = dij

(k) as the minimum weight of any path from vertex i to 
vertex j, such that all intermediate vertices are in {1, 2, 3, ..., k}   
D(0)  = A, original adjacency matrix (only paths are single edges) 
D(n)  the matrix we want to compute  
D(k)’s elements are: D(k)[i, j] = dij

(k) = min(dij
(k-1), dik

(k-1) + dkj
(k-1) ) 

Assumes vertices are numbered 1 to |V| 

Recursive Solution for D(k) 

ji

k

dij
(k-1) 

dik
(k-1) dkj

(k-1) 

The only intermediate nodes on the paths from i to j, i to k or k to j are in 
the set of vertices {1, 2, 3, ..., k-1}.   
If k is included in shortest i to j path, then a shortest path has been found 
that includes k.   
If k is not included in shortest i to j path, then the shortest path still only 
includes vertices in the set 1…k-1. 

D(k)[i, j] = dij
(k) = min(dij

(k-1), dik
(k-1) + dkj

(k-1) )
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Floyd's APSP Algorithm 
Use adjacency matrix A for G = (V, E): 

    w(i, j)  if (i,j) ∈ E 
  A[i, j] = aij =    0  if i = j 
    ∞  if i ≠  j and (i, j) ∉ E 

1 

2 

3 

4 

5 
-1

4

3
6

-2

9
2

46

80 2 -1 ∞ ∞

∞ 0 8 ∞ 9
∞ ∞ 0 6 3
4 ∞ ∞ 0 4
∞ 6 ∞ -2 0

1   2   3   4   5 
1 
2 
3 
4 
5 

Floyd's APSP Algorithm 
Use adjacency matrix Π to keep track of predecessors: 

     
   π(0)

ij =       i        if i ≠ j and w(i,j) < ∞ 
      Ø  if i = j or w(i, j) = ∞ 

1 

2 

3 

4 

5 
-1

4

3
6

-2

9
2

46

8Ø 1 1 Ø Ø 

Ø Ø 2 Ø 2
Ø Ø Ø 3 3
4 Ø Ø Ø 4
Ø 5 Ø 5 Ø 

1   2   3   4   5 
1 
2 
3 
4 
5 

πij is predecessor of j on some shortest 
path from i

Floyd's APSP Algorithm 

Floyd-Warshall-APSP(A) 
  1.  n = A.rows 
  2.  D(0) =  A 
  3.  for k = 1 to n  
  4.      let D(k) = be new n × n matrix 
  5.      let Π(k) = be new n × n matrix 
  6.      for i = 1 to n  
  7.          for j = 1 to n  
  8.              if  dij

(k) > dik
(k-1) + dkj

(k-1)  
  9.                      dij

(k) = dik
(k-1) + dkj

(k-1)  
10.                      πij

(k) = πkj
(k-1) 

11.              else πij
(k) = πij

(k-1) 
12.  return D(n) and Π(n) 

Time efficiency? 

Space efficiency?

Floyd's Simplified APSP Algorithm 

Floyd-Warshall-APSP(D,Π) 
  1.  n = D.rows 
  2.  for k = 1 to n   
  3.      for i = 1 to n  
  4.          for j = 1 to n  
  5.              if  d[ i ][ j ] > d[ i ][ k ] + d[ k ][ j ]  
  6.                      d[ i ][ j ] = d[ i ][ k ] + d[ k ][ j ]   
  7.                      π[ i ][ j ]= π[ k ][ j ] 
  8.  return D and Π 
 

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

0 4 11
6 0 2
3 ∞ 0

D(0) = A =

∅ 1 1
2 ∅ 2
3 ∅ ∅

∏(0) =

7

1

3->1, 1->2 = 7 

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

∅ 1 1
2 ∅ 2
3 1 ∅

∏(1) =

0 4 11
6 0 2
3 7 0

D(1) =
6

2

1->2, 2->3 = 6 
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0 4 6
6 0 2
3 7 0

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

∅ 1 2
2 ∅ 2
3 1 ∅

∏(2) =

D(2) =  
5

3

2->3, 3->1 = 5 

Printing the shortest path 
 1

 2 3

6
411

3
2

∅ 1 2
3 ∅ 2
3 1 ∅

∏(3)

0 4 6
5 0 2
3 7 0

D(3) 

Print-path( p, i, j )  // p is predecessor matrix π 
  1.  if i != j 
  2.        Print-path(p, i, p[ i ] [ j ]) 
  3.  print j 
 

Print-APSP(p, i, j) // p is predecessor matrix π 
  1.  if i = j 
  2.      print i 
  3.  else if p[ i ][ j ] = NIL 
  4.      print "no path from ”+ i + " to ”+ j + “ exists” 
  5.  else  
  6.      Print-APSP(p, i, p[ i ][ j ]) 
  7.      print j 
 

Printing the shortest path 
Print-APSP(p, i, j) // p is predecessor matrix π 
  1.  if i = j 
  2.      print i 
  3.  else if p[ i ][ j ] = NIL 
  4.      print "no path from ”+ i + " to ”+ j + “ exists” 
  5.  else  
  6.      Print-APSP(p, i, p[ i ][ j ]) 
  7.      print j 
 

0 4 6
6 0 2
3 7 0

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

0 4 11
6 0 2
3 ∞ 0

D(0) = A =

0 4 11
6 0 2
3 7 0

D(1) D(2) 

2→ 3 → 1

0 4 6
5 0 2
3 7 0

D(3) 

3→ 1 → 2 1→ 2 → 3

F-APSP Algorithm 

0 3 8 -4 ∞

∞ 0 ∞ 7 1
∞ 4 0 ∞ ∞

∞ ∞ ∞ 0 6
2 ∞ -5 ∞ 0

D(0) = A = 

0 3 8 -4 ∞

∞ 0 ∞ 7 1
∞ 4 0 ∞ ∞

∞ ∞ ∞ 0 6
2 5 -5 -2 0

D(1) = 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened squares
represent shorter paths
through vertex 1.
5à1à2, 5à1à4

Then look at all paths
that go through vertex 2.

∅ 1 1 1 ∅

∅ ∅ ∅ 2 2
∅ 3 ∅ ∅ ∅

∅ ∅ ∅ ∅ 4
5 1 5 1 ∅

π(0) = A = 

π(1) = 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 1 2 1
∅ ∅ ∅ 2 2
∅ 3 ∅ 2 2
∅ ∅ ∅ ∅ 4
5 1 5 1 ∅

FW-APSP Algorithm 

Shorter paths through 2

Shorter paths through 1
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0 3 8 -4 4
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 5 -5 -2 0

D(2) = 

F-APSP Algorithm 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened squares
represent shorter paths
through vertex 2.
1à2à5; 3à2à4;
3à2à5

Then look at all paths
that go through vertex 3.

0 3 8 -4 4
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 -1 -5 -2 0

D(3) = 

F-APSP Algorithm 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

D(3) is all direct routes or routes 
through nodes 1, 2, and 3.

The darkened square
represents a shorter path
through vertex 3.
  5à3à2

Then look at all paths
that go through vertex 4.

0 3 8 -4 2
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 -1 -5 -2 0

D(4) = 

F-APSP Algorithm 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened square
represents a shorter path
through vertex 4.
1à4à5

D(4) is all direct routes or routes 
through nodes 1, 2, 3, and 4.

Then look at all paths
that go through vertex 5.

0 1 -3 -4 2
3 0 -4 -1 1
7 4 0 3 5
8 5 1 0 6
2 -1 -5 -2 0

D(5) = 

F-APSP Algorithm 

1à4à5à3à2, 1à4à5à3

2à5à1, 2à5à3, 2à5à1à4

3à2à5à1, 3à2à5à1à4

4à5à1, 4à5à3à2, 4à5à3

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

The darkened squares
represent shorter paths
through vertices 1...5.

0 3 8 ∞ -4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ -5 0 ∞

∞ ∞ ∞ 6 0

D(0) = D = 

0 3 8 ∞ -4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 5 -5 0 -2
∞ ∞ ∞ 6 0

D(1) = 

4 à 1 à 5 = -2

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

4 à 1 à 2 = 5 

1 à 2 à 4 = 4 

3 à 2 à 4  = 5
3 à 2 à 5  = 11

FW-APSP Algorithm 

0 3 8 4 -4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 -5 0 -2
∞ ∞ ∞ 6 0

D(2) = 

F-APSP Algorithm 

4 à 3 à 2 = -1 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5
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π(2) = 

F-APSP Algorithm 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 1 2 1
∅ ∅ ∅ 2 2
∅ 3 ∅ 2 2
4 1 4 ∅ 1
∅ ∅ ∅ 5 ∅

Shorter path through 3

D(3) = 

F-APSP Algorithm 

 2 à 4 à 1 = 3
 3 à 2 à 4 à 1 = 7

0 3 8 4 -4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 -1 -5 0 -2
∞ ∞ ∞ 6 0

 2 à 4 à 3 = -4
 1 à 2 à 4 à 3 = -1

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

 2 à 4 à 1 à 5 = -1
 3 à 2 à 4 à 1 à 5 = 3

 5 à 4 à 1 = 8
 5 à 4 à 3 à 2 = 5
 5 à 4 à 3 = 1

D(3) = 

F-APSP Algorithm 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 1 2 1
∅ ∅ ∅ 2 2
∅ 3 ∅ 2 2
4 3 4 ∅ 1
∅ ∅ ∅ 5 ∅

Shorter paths through 4
D(4) = 

F-APSP Algorithm 

1 à 5 à 4 = 2
1 à 5 à 4 à 3 = -3
1 à 5 à 4 à 3 à 2 = 1

0 3 -1 4 -4
3 0 -4 1 7
7 4 0 5 11
2 -1 -5 0 -2
8 5 1 6 0

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

π(4) = 

F-APSP Algorithm 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 1 4 2 1
4 ∅ 4 2 1
4 3 ∅ 2 1
4 3 4 ∅ 1
4 3 4 5 ∅

Shorter paths through 5 D(5) = 

F-APSP Algorithm 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

0 1 -3 2 -4
3 0 -4 1 7
7 4 0 5 11
2 -1 -5 0 -2
8 5 1 6 0
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π(5) = 

F-APSP Algorithm 

 1

 2

 3

4 5

3 4

6
-4

8

7
2 1

-5

∅ 3 4 5 1
4 ∅ 4 2 1
4 3 ∅ 2 1
4 3 4 ∅ 1
4 3 4 5 ∅

 Running Time of Floyd's-APSP 

Lines 3 – 6: |V3| time for triply-nested for loops 
 

 Overall running time =  θ(V3) 

The code is tight, with no elaborate data structures 
and so the constant hidden in the θ-notation is small. 
 
Much better than exponential time!  So big win! 


