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Breadth-First Search  
using a FIFO Queue

BFS (G, s): 
 1. s.d = 0
 2. s.c = gray
 3. for each node v != s
 4.    v.d = ∞ 
 5.    v.c = white
 6. Q.enqueue (s)
 7. while Q ≠ ∅
 8.    u = Q.dequeue()
 9.    for each v adjacent to u
10.        if v.c == white
11.           v.c = gray
12.           v.d = u.d + 1
13.           v.π = u
14.           Q.enqueue(v)     
15.    u.c = black

BFS-Init (G): 
 1. for all nodes v in V
 2.   if v is white
 3.       BFS(G, v)
 

An initialization 
algorithm like that 
shown above would 
ensure that all nodes 
are visited, even in 
disjoint sets of nodes. 

Example BFS Traversal
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Order of visiting:       a1  c2   d3  e4   f5   b6   g7   h8   i9   j10 

Distance of vertex  :  0    1    1    1   2    3    ∞    ∞   ∞  ∞   
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Tree edges are solid lines and dashed lines are cross
edges.

Bipartite Graphs
A graph is bipartite if all its vertices can be 
partitioned into two disjoint subsets X and Y so 
that every edge connects a vertex in X with a 
vertex in Y, i.e., if its vertices can be colored in 
2 colors so that every edge has its end points 
colored in different colors.
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Bipartite Graphs
Explain how BFS could be used to detect 
a bipartite graph.
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Mark the source, A, 
with color1, mark the 
nodes at level 1 with 
color2, and so on. 
Every node on an 
even numbered level 
will be color1 and 
every odd color2 

Bipartite Graphs
Is this graph bipartite?  No.  The edge 
(B,C) would have to connect nodes of the 
same color

A B

DC
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Depth-First Traversal

Depth-First Traversal is another algorithm for traversing a 
graph.

Called depth-first because it searches "deeper" in the graph 
whenever possible.

Edges are explored out of the most recently discovered vertex 
v that still has unexplored edges.  When all of v's edges have 
been explored, the search "backtracks" to explore the edges 
incident on the vertex from which v was discovered.

We will use an algorithm with a stack, S, to manage the set of 
nodes.

Depth-First Search
DFS algorithm maintains the following information for each 
vertex u:

- u.c (white, gray, or black) : indicates status
white = not discovered yet
gray = discovered, but not finished
black = finished

- u.d : discovery time of node u

- u.f : finishing time of node u 

- u.π : predecessor of u in Depth-First tree

DFS node
 

Each node has fields for predecessor (π), discovery time (d), 
finish time (f) and color (c).  Each node also has an associated 
adjacency list with pointers to neighboring nodes. 
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Adjacency
List

Depth-First Search

DFS-Init (G, s): 
 1. time = 0
 2. for all nodes v
 3.    v.d = v.f = ∞ 
 4.    v.c = white
 5.    v.π = NONE
 6. S = ∅
 7. DFS (G, s)
 

Initialize global timer to 0.

Set discovery time and finish 
times of all nodes to infinity 
and color them white.

Initialize stack S to ∅.

Call DFS (G, s)

Depth-First Search Using a Stack
DFS (G,s)
 1. S.push(s)
 2. while S is not empty
 3.    u = S.peek()
 4.    if u.c == WHITE
 5.        u.c = GRAY
 6.        u.d = time
 7.        time = time + 1
 8.        for all white neighbors v of u
 9             v.π = u
10.            S.push(v)
11.    else if u.c == GRAY
12.        S.pop()
13.        u.c = BLACK
14.        u.f = time
15.        time = time + 1
16.    else // u is BLACK
17.        S.pop()
18. end while

Complexity (Adjacency List) 
•  check all edges 

adjacent to each node 
from both directions - 
O(E) time 

•  total = O(V + E) = 
O(V2) (w.c.) 

Complexity is based on 
number of edges |E| 

Depth-First Search (recursive version)

DFS (G) 
1.   for each w ∈  G 
2.      if w.c == white 
3.          DFS-Visit (G,w) 

Initially, time (counter) = 0 
 
After execution, for every 
vertex u,  u.d < u.f 
 

DFS-Visit (G,u) 
1.   u.c = gray 
2.   u.d = time 
3.   time = time + 1 
4.   for each v adjacent to u 
5.       if v.c == white 
6.           v.π = u 
7.           DFS-Visit(G,v) 
8.       end if 
9.   end for 
10.  u.c = black 
11.  u.f = time 
12.  time = time + 1 

Note:  If G = (V, E) is not 
connected, then DFS will still 
visit the entire graph with the 
additional code above. 
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Example DFS Traversal
G

EA

J I

H

B

FC

D

d3,4
c2,11 
a1,12      

e7,8
b6,9 
f5,10      

j16,17
i15,18
h14,19
g13,20     

The first 
subscript 
indicates
the time at 
which each 
node is 
discovered 
and pushed 
onto stack; the 
second 
indicates the 
time at which 
the node was 
finished.

Depth-first Search Forest
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Tree edges are solid lines and dashed lines are back
edges.

Breadth-first Search Forest
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Tree edges are solid lines and dashed lines are cross
edges.

Facts about DFS and BFS on 
undirected graph

DFS BFS

Data Structure Stack Queue
No. of vertex 

orderings
2 orderings 1 ordering

Edge Types tree and back 
edges

tree and cross 
edges

Applications connectivity, 
acyclicity, 
articulation 

points

connectivity, 
acyclicity, 
minimum-edge 

paths

Efficiency for 
adjacency lists

θ(|V| + |E|) θ(|V| + |E|)

Depth-First Search
Theorem 22.7 (parenthesis theorem) For any two vertices u and v, 
exactly one of the following three conditions hold:

1.  Either the intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint, or
2.  the interval [u.d, u.f] is contained entirely within the interval [v.d, 

v.f], (and u is a descendant of v), or

3.    the interval [v.d, v.f] is contained entirely within the interval [u.d, 
u.f], (and v is a descendant of u).

Proof:  Case 1 –  u.d < v.d.  If v.d < u.f, then v was discovered when u 
was still gray, implying v is a descendant of u.  Since v was discovered 
before u is finished, all of v's outgoing edges will have been explored 
before u is finished.  Therefore, the interval [v.d,v.f] is contained within 
the interval [u.d,u.f] (condition 3 holds, v is descendant of u).  
If u.d < v.d and u.f < v.d, then u was discovered and finished before v 
was discovered (condition 1 holds, intervals are disjoint). 

Proof:  Case 2 – v.d < u.d.  Similar argument to case 1 on last slide 
(condition 2 if u.f < v.f or condition 1 if v.f < u.f).                               n 

Corollary 22.8 (nesting of descendant’s intervals):  Vertex v is a 
descendant of vertex u in the DFS forest for a graph G iff 
                                     u.d < v.d < v.f < u.f.

Depth-First Search
Theorem 22.7 (parenthesis theorem) For any two vertices u and v, 
exactly one of the following three conditions hold:

1.  Either the intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint, or
2.  the interval [u.d, u.f] is contained entirely within the interval [v.d, 

v.f], (and u is a descendant of v), or

3.    the interval [v.d, v.f] is contained entirely within the interval [u.d, 
u.f], (and v is a descendant of u).
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Depth-First Search
Theorem 22.9  (White-Path theorem):
In a depth-first forest of a graph G, vertex v is a descendant 
of vertex u iff at the time u.d that the search discovers u, 
vertex v can be reached from u along a path consisting 
entirely of white vertices. 

Proof:  
Forward direction of iff: Assume v is a descendant of u in a 
depth-first tree.  Let w be any vertex on the path between u 
and v in the depth-first tree, so that w is also a descendant 
of u.  By Corollary 22.8, u.d < w.d, and so w is white at time 
u.d and v is reachable on a path of white vertices.

Theorem 22.9  (White-Path theorem):
In a depth-first forest of a graph G, vertex v is a descendant of vertex u 
iff at the time u.d that the search discovers u, vertex v can be reached 
from u along a path consisting entirely of white vertices.
Proof:
Backward Direction of iff: (by contradiction) Assume vertex v is 
reachable from u along a path consisting of white vertices at time u.d, 
but v does not become a descendant of u in the DFS.  Assume, wlog, 
that every other vertex between u and v becomes a descendant of u.  
Let w be the immediate predecessor of v on a path from u.  Then by 
corollary 22.8, w.f ≤ u.f (or w.f=u.f if w=u).  
 

Since v is reachable from u via a path of white vertices by assumption, v 
must be discovered after u, but before w is finished.  So u.d < v.d < w.f ≤ 
u.f.  So by the parenthesis theorem (22.7), [v.d, v.f] must be contained 
within [u.d,u.f] and v must be a descendant of u, a contradiction.

n

DFS Tree

DFS builds a depth-first tree whose edges can be traced 
from any node to s using the π values at each node.

The DFS algorithm defines a depth-first forest Gπ.

Topological Sort - Application of DFS

Complexity (Adjacency List Representation) - O(V + E) 
 
Topologically sorted vertices are ordered in reverse order of their  
finishing times.  An application of this type of sorting algorithm is to  
indicate precedence among ordered events represented in a DAG. 

input:    directed acyclic graph (DAG) 
output:  ordering of nodes s.t. if (u,v) ∈ E, then u comes before v in    
            ordering 
 

Topological-Sort (G) 
1.  call DFS(G,s) to compute finishing times v.f for each v 
2.  as each vertex is finished, insert it at head of a linked list 
3.  return the linked list of vertices 

Topological Sort - Application of DFS
Lemma 22.11:  A directed graph G is acyclic iff a DFS of G yields no 

back edges. 
 
Proof: (by contrapositive: show if !q then !p) 
è  Suppose there is a back edge (u,v).  Then vertex v is an 

ancestor of u in the depth-first forest.  Thus, there is a path 
from v to u in G and the back edge (u,v) completes the cycle, 
so G is not a DAG. 

ç  Suppose G contains a cycle c (therefore is not a DAG).  Let v be 
the first vertex discovered in c, and let (u,v) be the edge 
incoming at v in c.  At time v.d, the vertices of c form a white 
path from v to u.  Then by Thm. 22.9, u becomes a descendant 
of v.  Therefore, (u,v) is a back edge.   

Topological Sort - Application of DFS
Theorem 22.12:  Topological-Sort(G) produces a topological sort or 

precedence graph of a DAG. 
 
Proof: Consider any edge in DAG G from u to v.  We need to show 

that, for any pair of distinct vertices u and v  s.t. there is an edge 
from u to v,  v.f < u.f.   
 
When edge (u,v) is explored, v cannot be gray, since then (u,v) 
would be a back edge, contradicting L. 22.11.  Therefore, v must 
be either white or black when edge (u,v) is explored.  If v is white, 
it becomes a descendant of u and finishes before u.  If v is black, 
it has already finished.  In either case, v.f < u.f.   
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Finding Strongly Connected 
Components of a Digraph

A digraph is strongly connected if, for any distinct pair of vertices u 
and v there exists a directed path from u to v and a directed path from 
v to u.  In general, a digraph's vertices can be partitioned into disjoint 
maximal subsets of vertices that are mutually accessible via directed 
paths of the digraph; these subsets are called strongly connected 
components. 

input:    directed graph G 
output:  strongly connected components of G 
 

1.  do a DFS traversal of the digraph and number its vertices in the 
order that they become dead ends. 

2.  reverse the directions of all the edges of the digraph to get (GT) 
3.  do a DFS traversal of GT by starting the traversal at the highest 

numbered vertex and consider the vertices in order of decreasing 
u.f 

4.  output the vertices of each tree in the DFF from line 3 as GSCC 

Finding Strongly Connected 
Components of a Digraph

The strongly connected components GSCC are exactly the subsets of 
vertices in each DFS tree obtained during step 3, the last traversal. 
 
Time complexity of this algorithm? 

input:    directed graph G 
output:  strongly connected components of G 
 

1.  do a DFS traversal of the digraph and number its vertices in the 
order that they become dead ends. 

2.  reverse the directions of all the edges of the digraph to get (GT) 
3.  do a DFS traversal of GT by starting the traversal at the highest 

numbered vertex and consider the vertices in order of decreasing 
u.f 

4.  output the vertices of each tree in the DFF from line 3 as GSCC 


