Lower Bounds for Comparison-Based Sorting Algorithms (Ch. 8)

We have seen several sorting algorithms that run in $\Omega(n \log n)$ time in the worst case (meaning there is some input on which the algorithm runs in at least $\Omega(n \log n)$ time).

- mergesort
- heapsort
- quicksort

In all comparison-based sorting algorithms, the sorted order results only from comparisons between input elements.

Is it possible for any comparison-based sorting algorithm to do better?

Lower Bounds for Sorting Algorithms

Theorem: Any comparison-based sort must make $\Omega(n \log n)$ comparisons in the worst case to sort a sequence of n elements. (Across all comparison-based sorting algorithms, no worst case runs faster than $n \log n$ time.)

But how do we prove this?

We’ll use the decision tree model to represent any sorting algorithm and then argue that no matter the algorithm, there is some input that will cause it to run in $\Omega(n \log n)$ time.

Question: How many ways are there to order n elements?

$n!$

Binary tree

Recall that a binary tree is a tree data structure in which each node has at most 2 children, a left child and a right child.

Sources differ, but most authors agree that a proper binary tree is one in which every node has 0 or 2 children. A complete or full binary tree has every level completely filled.

The height of a node is the longest root to leaf path to that node.

Theorem: A full proper binary tree of height h has at most 2^h leaves.

Basis: a binary tree of height 0 has $2^0 = 1$ leaf

Inductive hypothesis: a binary tree of height $k \geq 1$ has at most 2^k leaves.

Inductive step: Show a binary tree of height $k+1$ has at most 2^{k+1} leaves.

By the IHOP, we know that a binary tree of height k has at most 2^k leaves. A binary tree of height $k+1$ is a tree of height k in which every leaf has 2 children. So the number of leaves in a binary tree is $2(2^k) = 2^{k+1}$

The Decision Tree Model

Given any comparison-based sorting algorithm, we can represent its behavior on an input of size n by a decision tree. Note: we need only consider the comparisons in the algorithm (the other operations only make the algorithm take longer).

A decision tree is a binary tree.

- each internal node in the decision tree corresponds to one of the comparisons in the algorithm.
- start at the root and do first comparison (e.g., x \leq y)
- if $x \leq y$ take left branch, if $x > y$ take right branch, etc.
- each leaf represents one possible ordering of the input

\Rightarrow One decision tree exists for each algorithm and input size

Binary tree height and upper bound on number of leaves

The height of a node is the longest root to leaf path to that node.

Theorem: A full proper binary tree of height h has at most 2^h leaves.

Example: decision tree with $n = 3$, with elements $A[1..3]$ has $3! = 6$ leaves containing 3 numbers sorted in ascending order.

The length of the longest root to leaf path in this tree is h

\Rightarrow worst-case number of comparisons

\leq worst-case number of operations of algorithm
The $\Omega(n\lg n)$ Lower Bound

Theorem: Any decision tree for sorting n elements has height $\Omega(n\lg n)$ (therefore, any comparison-based sorting algorithm requires $\Omega(n\lg n)$ comparisons in worst case).

Proof: Let h be the height of the tree. Then we know

- the tree has at least (\geq) $n!$ leaves
- the tree is binary, so it has at most (\leq) 2^h leaves

$\#$ of leaves is upper bounded by 2^h and lower bounded by $n!$

2$^h \geq \#$ number of leaves $\geq n!$

so we have:

$$2^h \geq n!$$

taking \lg of both sides:

$$\lg(2^h) \geq \lg(n!)$$

$$h \geq \Omega(n\lg n) \text{ (Eq. 3.18)} \qed$$

Optimal Sorting Algorithms

- This lower bound proof tells us that heap-sort and merge-sort are asymptotically optimal comparison-based sorting algorithms.

- Randomized-Quick-Sort is asymptotically optimal with high probability.

- We also know that insertion-sort, selection-sort, and bubble-sort are not asymptotically optimal comparison-based algorithms.