
11/10/19

1

Definition: Given an undirected, unweighted graph
G = (V, E), a spanning tree of G is any subgraph of G that
is a tree

Spanning Trees (Ch. 23)

a b c

d
f

e
g h

Assign a weight (a numerical value) to each edge of the
graph.
Examples:

1.  a road network, the weights could represent the length of
each road;

2.  a network of connecting flights, weights could represent
flight time;

3.  a computer network, the weights could represent the
bandwidth of each bus and link.

4.  length of wire needed to connect gates in a circuit.

Weighting edges

Definition: Given an undirected graph G = (V, E) with weights on
the edges, a minimum spanning tree of G is a subgraph T ⊆ E
such that T:

o  is a spanning tree of G
o  has no cycles (i.e., is a tree), and
o  has a sum of edge weights that is minimum over

 all possible spanning trees of G.

Minimum Spanning Trees

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

MST property: Let G = (V, E) and let T be any spanning

tree of G. Suppose that for every edge (u,v) of G that is not

in T, if (u,v) is added to T it creates a cycle such that (u,v) is
a maximum weight edge on that cycle. Then T has the MST

property.

If there are 2 spanning trees T1 and T2 on G that both have

the MST property, then T1 and T2 have same total weight.

MST Property

We will look at two “greedy algorithms” to find an MST of a
weighted graph: Kruskal's and Prim's algorithms

A greedy algorithm makes choices in sequence such that each
choice is best according to some limited “short-term”criterion

that is not too expensive to evaluate (no look-ahead is
involved).

Minimum Spanning Trees

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

Finding an MST has proven to be a useful technique
in finding maximum bandwidth channels, circuit

design, and in finding neural pathways in the brain.

Finding maximum bandwidth channels in networks

requires a simple change to Kruskal's algorithm:

 N. Malpani, J. Chen / Information Processing Letters 83 (2002)
175–180

MST Uses

11/10/19

2

Kruskal's MST Algorithm
Idea:
 - use a greedy strategy
 - consider edges in increasing order of weight (sort edges)

 - add edge to spanning forest F if adding the edge doesn’t
 create a cycle.

Algorithm MST-Kruskal (G)
 R = E // R is initially set of all edges
 F = ∅ // F is set of edges in a spanning tree of a sub-graph of G
1.  sort all edges of R in increasing order of weight
2.  while (R is not empty)
3.  remove the lightest-weight edge, (v,w), from R
4.  if (v,w) does not make a cycle in F
5.  add (v,w) to F
6.  return F

Kruskal's MST Algorithm
Complexity:
 line 1- Sorting edges = ?? time
 lines 2-5 - Keep edges in a structure with O(1) time
 line 3- Removal = ?? time per removal
 line 4 - Checking to see if edge creates a cycle = ?? time

Algorithm MST-Kruskal (G)
 R = E // R is initially set of all edges
 F = ∅ // F is set of edges in a spanning tree of a sub-graph of G
1.  sort all edges of R in non-decreasing order of weight
2.  while (R is not empty)
3.  remove the lightest-weight edge, (v,w), from R
4.  if (v,w) does not make a cycle in F
5.  add (v,w) to F
6.  return F

Disjoint Sets (Ch. 21)
A disjoint-set data structure

o  maintains a collection of disjoint subsets
C = s1,s2,…,sm, where each si is identified by a
representative element (set id).

Operations on C:
•  Make-Set(x): creates singleton set {x}

•  Union(x,y): x and y and are id’s of their resp. sets, sx and sy;

union operation replaces sets sx and sy with a set that is sx ∪ sy
and returns the id of the new set.

•  Find-Set(x): returns the id of the set containing x.

Data Structures for Disjoint Sets

Applications include network algorithms such as finding
the connected components of a graph.

PROBLEM IS HOW TO KEEP ELEMENTS
IN A SET IN SUCH A WAY THAT IT IS A FAST
(SUB-LINEAR TIME) OPERATION TO
DETERMINE WHETHER A NEW EDGE WILL
CREATE A CYCLE.

We determine membership using representative node
names for each connected component.

Data Structures for Disjoint Sets
Comment 1: The Make-Set operation is only used during the

initialization of a particular algorithm.

Comment 2: We assume there is an array of pointers to each
x ∈ U (so we never have to search for a particular

element, just for the id of the set x is in).

 Thus the problems we’re trying to solve are how to join
the sets (Union) and how to find the id of the set
containing a particular element (Find-Set) efficiently.

Rooted Tree Representation of Sets
Idea: Organize elements of each set as a tree with id = element at the
root, and a pointer from every child to its parent. Also assume we have
an array of pointers to each element in the tree.

Make-Set(x): (initial) O(1) time

Find-Set(x):
- start at x (using pointer provided
 to find x) and follow pointers up to
 the root.
-  return id of root

w-c running time is O(n)

Union(x, y):
- x and y are ids (roots of trees).
-  make x a child of y and return y

running time is O(1)

x

y

x y∪
x

y=

11/10/19

3

Weighted Union Implementation for Trees
Idea: Add rank field to each node x holding the number of nodes in
subtree rooted at x (only care about weight field of roots, even though
other nodes maintain rank value too). When doing a Union, make the
smaller tree (with lower rank at the root) a subtree of the larger tree
(with greater rank at the root).

Make-Set(x): O(1)

Find-Set(x):
- ??? See next slide, O(n) w.c.

Union(x, y):
- x and y are ids (roots of trees).
- make node (x or y) with smaller
 rank the child of the other
- O(1) time

x y∪
y=

x

rankx = 4

ranky = 3

rankx = 7

Weighted Union
Theorem: Any k-node tree created by k-1 weighted Unions has height O(lg k)
(assume we start with Make-Set on k singleton sets). We want to show that
trees stay “short”.

Show h = max(hx + 1, hy) ≤ lg k. The IHOP must hold for trees x and y.

•  hx + 1 ≤ lg(m) + 1 ≤ lg(k/2) + 1 = lg k – 1 + 1 = lg k
•  hy ≤ lg(k – m) ≤ lg k (for positive m)

x y

m
nodes

k - m
nodes

hx hy∪ = x
m

nodes

y
k - m
nodes

h

Proof: By induction on k, the number of nodes in forest.
Basis: k = 1, height = 0 = lg 1 <true>
Inductive Hypothesis: Assume true for all i < k.
Inductive Step: Show true for k. Suppose the last operation performed was
union(x,y) and that if m = wt(x) and wt(x) ≤ wt(y), that m ≤ k/2.

Path Compression Implementation

Idea: extend the idea of weighted union (i.e., unions still weighted), but
on a Find-Set(x) operation, make every node on the path from x to the
root (the node with the set id) a child of the root.

Find-Set(x) still has worst-case time of O(lgn), but subsequent Find-Sets for
nodes that used to be ancestors of x (or subsequent finds for x itself) will
now be very fast: O(1).

a
b

c
d

x
a

b c d

x

Path Compression Analysis

The running time for m (find or union) disjoint-set operations on n
elements is

O(mlg*n)

The full proof is given in our textbook.

Kruskal’s MST Algorithm

MST-Kruskal (G) /** G = (V, E) **/
1. T = ∅
2. for each v ∈ V
 make-set(v)
3. sort edges in E by increasing (non-decreasing) weight
4. for each (u,v) ∈ E
 if find-set(u) ≠ find-set(v)
 T = T ∪ {(u,v)} /** add edge to MST **/
 union(find-set(u), find-set(v))
5. return t

Idea: Make each node a singleton set.
Sort edges, then add the minimum-weight edge (u,v) to the MST if u
and v are not already in same sub-graph.
Use weighted union with path compression during find-set operations to
determine when nodes are in same sub-graph.

Kruskal's MST Algorithm
Running Time

* initialization (lines 1-3) –
 O(1) + O(V) + O(E lg E) = O(V + E lg E)

* E iterations of for-loop (line 4)
 - 2E finds – O(E lg*E) time
 - O(V) unions = O(V) time (at most V – 1 unions)

•  total: O(V + E lg E) = O(E lg V) time

 - (note lg E = O(lgV) since E = O(V2), so lgE = 2 lg V).

11/10/19

4

MST-Kruskal (G)
1.  T = ∅
2.  for each v ∈ V
 makeset(v)
3. sort edges in E by increasing weight
4. for each (u,v) ∈ sorted E
 if find (u) ≠ find(v) /** doesn’t create a cycle **/
 T = T ∪ {(u,v)} /** add edge to MST **/

 union(find(u), find(v))
5. return T

List the edges in the above graph in a possible order they
are added to the MST by Kruskal’s algorithm. Which edges
would not be added?

a b c

d
f

e
g h

2 6
3

6 2
5

4 7

81

3

5

MST-Kruskal (G)
1.  T = ∅
2.  for each v ∈ V
 makeset(v)
3. sort edges in E by increasing weight
4. for each (u,v) ∈ sorted E
 if find (u) ≠ find(v) /** doesn’t create a cycle **/
 T = T ∪ {(u,v)} /** add edge to MST **/

 union(find(u), find(v))
5. return t

a b c

d
f

e
g h

2 6
3

6 2
5

4 7

81

3

5

Correctness of Kruskal's Algorithm
Theorem: Kruskal's algorithm produces an MST on G = (V, E).

Proof: Clearly, the algorithm produces a spanning tree. We need
to argue that it is an MST.

Suppose, in contradiction, the algorithm does not produce an MST.
Suppose that the algorithm adds edges to the tree T' in order
 e1, e2, ..., ei,…, en-1.

Let i be the value such that e1, e2, …, ei-1 is a subset of some MST T,
but e1, e2, …, ei-1, ei is not a subset of any MST.

Consider T ∪ {ei}
•  T ∪ {ei} must have a cycle c involving ei
•  In the cycle c there is at least one edge that is not in e1, e2, …, ei-1 (since
 the algorithm doesn’t pick an edge that creates a cycle and it picked ei).

•  let e* be the edge in T ∪ {ei} that forms a cycle when ei is added to
T that is not in e1, e2, …, ei-1

 Then wt(ei) < wt(e*), otherwise the algorithm would have picked e*
 next in sorted order when it picked ei (by assumption that T, with
e*, is not an MST because the algorithm does not find an MST).

Claim: T' = T – {e*} ∪ {ei} is a MST
•  T' is a spanning tree since it contains all nodes and has no cycles.
•  wt(T') < wt(T), so T is not a MST

This contradiction means our original assumption must be wrong
and therefore the algorithm always finds an MST.

Correctness of Kruskal's Algorithm (cont.)

Prim’s MinST Algorithm
Algorithm starts by selecting an arbitrary starting vertex, and
then “branching out” from the part of the tree constructed so
far by choosing a new vertex and edge at each iteration.

Idea:
 - always maintains one connected subgraph (different from Kruskal's)

 - at each iteration, chooses the lowest weight edge that goes out from
 the current tree (a greedy strategy).

Prim’s MST Algorithm

Idea: Use a min priority
queue PQ that uses the wt field
as a key.
Associate with each node v two
fields:
•  v.wt : if v isn’t in T, then

holds the min wt of all the
edges from v to a node in T.

•  v.π: if v isn’t in T, holds the
name of the node u in T such
that wt(u,v) is v’s best edge
to node in T.

As min wt edges are discovered
they are added to T.

MST-Prim (G, r)
1.  insert each v ∈V into PQ with v.wt = ∞,���

v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v.wt = wt(u,v)

11/10/19

5

Prim’s MST Algorithm

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

Start at node a: PQ contains all nodes

a b c d e f g h
 π
wt

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

PQ

iteration 1: PQ = PQ – {a}
a b c d e f g h

 π
wt

∅ a ∅ a a ∅ ∅ ∅
0 1 ∞ 6 3 ∞ ∞ ∞

x PQ

T = {∅} (change b, d, e) because of
 edges (a,b), (a,e), and (a,d)

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

iteration 2: PQ = PQ – {b}
a b c d e f g h

 π
 wt

∅ a b a a ∅ ∅ ∅
0 1 6 6 3 ∞ ∞ ∞

x PQ

T = {(a,b)} (change c due to edge (b,c))

x

iteration 3: PQ = PQ – {e}
a b c d e f g h

 π
 wt

∅ a e e a ∅ e e
0 1 3 2 3 ∞ 2 8

x PQ

T = {(a,b), (a,e)} (change c, d, g, h) due
 to (c,e), (d,e), (e,g), and (e,h)

x x

iteration 4: PQ = PQ – {d}
a b c d e f g h

 π
 wt

∅ a e e a ∅ e e
0 1 3 2 3 ∞ 2 8

x PQ

T = {(a,b), (a,e), (d,e)} (no change to wt field at any node)

x x x

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

iteration 5: PQ = PQ – {g}

 π
a b c d e f g h

 wt
∅ a e e a g e g
0 1 3 2 3 4 2 7

x PQ x x x x

T = {(a,b), (a,e), (d,e), (e,g)} (change f & h)
 due to edges (f,g) and (g,h)

a b c d e f g h

 wt
∅ a e e a g e g
0 1 3 2 3 4 2 7

x PQ x x x x
iteration 6: PQ = PQ – {c}

T = {(a,b), (a,e), (d,e), (e,g), (c,e)} (no change to wt field at any node)

x
 π

a b c d e f g h

 wt
∅ a e e a g e g
0 1 3 2 3 4 2 7

x PQ x x x x
iteration 6: PQ = PQ – {f}

T = {(a,b), (a,e), (d,e), (e,g), (c,e), (f,g)} (no change to wt field at any node)

 π
x x

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

a b c d e f g h

 wt
∅ a e e a g e g
0 1 3 2 3 4 2 7

x PQ x x x x
iteration 7: PQ = PQ – {h} = ∅

T = {(a,b), (a,e), (d,e), (e,g), (c,e), (f,g), (g,h)}

 π
x x

DONE

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

Running Time of Prim’s MST Algorithm

•  Assume PQ is implemented with a binary min-heap

•  How can we tell if v ∈ PQ without searching heap?

Keep an array of
booleans indexed
by the nodes
indicating if node
is in heap

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

Running Time of Prim’s MST Algorithm

•  Assume PQ is implemented with a binary min-heap

•  How can we tell if v ∈ PQ without searching heap?

Keep an array of
booleans indexed
by the nodes
indicating if node
is in heap

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

11/10/19

6

Running Time of Prim's MST Algorithm

Running time:
•  initialize PQ: O(V) time

•  while loop...
 in each of V iterations of while loop:

 extract min = O(lg V) time
 update T = O(1) time
 ==> O(V lg V) total

 over all iterations (combined):

 check neighbors of u (line 6-9): O(E) iterations
 condition test and update π = O(1) time

 decreasing v's wt= O(lg V) time = O(E lg V)
So, the grand total is:

 O(V lg V + E lg V) = O(E lg V) (asymptotically, the
 same as Kruskal's)

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.  u = PQ.extract-min()
5.  add edge (u. π, u) to T
6.  for each neighbor v of u
7.  if v ∈ PQ and wt(u,v) < v.wt
8.  v.π = u
9.  v. wt = wt(u,v)

Correctness of Prim's Algorithm

Let Ti be the tree after the ith iteration of the while loop

Lemma: For all i, Ti is a subtree of some MST of G.

Proof: by induction on i, the number of iterations

Basis: when i = 0, T0 = ∅, ok - because empty is trivial
 MST subtree

IHOP: Assume Ti is a subtree of some MST M

Induction Step: Show that Ti +1 is a subtree of some MST

Correctness of Prim's Algorithm
Let (u,v) be the edge added in iteration i + 1. Then there are 2 cases:

case 1: (u, v) is an edge of M (the ultimate MST).
 Then clearly Ti+1 is a subtree of M (ok)

case 2: (u, v) is not an edge of M
 We know there is a path p in M from u to v (because M is a ST)

Let (x, y) be the first edge in p with x in Ti and y not in Ti. We know
this edge exists because the algorithm will not add edge (u,v) to a cycle.

 M' = M – {(x, y)} ∪ {(u, v)} is another spanning tree.

 Now we note that
 wt(M') = wt(M) – wt(x, y) + wt(u, v) ≤ wt(M)
 since (u, v) is the minimum weight outgoing edge from Ti

 Therefore, M' is also a MST of G and Ti+1 is a subtree of M'.

Definition: Given an undirected graph G = (V, E) with weights on
the edges, a maximum spanning tree of G is a subgraph T ⊆ E
such that T:

o  connects all nodes in V,
o  has no cycles (i.e., is a tree), and
o  has a sum of edge weights that is maximum over

 all possible spanning trees of G.

Maximum Spanning Trees

a b c

d
f

e
g h

1 6
3

6 2
5

4 7

82

3

5

