Spanning Trees (Ch. 23)

Definition: Given an undirected, unweighted graph \(G = (V, E) \), a **spanning tree** of \(G \) is any subgraph of \(G \) that is a tree.

![Diagram of a graph with labels a, b, c, d, e, f, g, h and edges with weights 1, 2, 3, 5, 6, 7, 8]

Weighting edges

Assign a weight (a numerical value) to each edge of the graph.

Examples:
1. a road network, the weights could represent the length of each road;
2. a network of connecting flights, weights could represent flight time;
3. a computer network, the weights could represent the bandwidth of each bus and link.
4. length of wire needed to connect gates in a circuit.

Minimum Spanning Trees

Definition: Given an undirected graph \(G = (V, E) \) with weights on the edges, a **minimum spanning tree** of \(G \) is a subgraph \(T \subseteq E \) such that:
- \(T \) is a spanning tree of \(G \)
- \(T \) has no cycles (i.e., is a tree), and
- \(T \) has a sum of edge weights that is minimum over all possible spanning trees of \(G \).

![Diagram of a graph with labeled edges and weights 1, 6, 3, 6, 2, 5, 4, 7, 8]

MST Property

MST property: Let \(G = (V, E) \) and let \(T \) be any spanning tree of \(G \). Suppose that for every edge \((u, v)\) of \(G \) that is not in \(T \), if \((u, v)\) is added to \(T \) it creates a cycle such that \((u, v)\) is a maximum weight edge on that cycle. Then \(T \) has the MST property.

If there are 2 spanning trees \(T_1 \) and \(T_2 \) on \(G \) that both have the MST property, then \(T_1 \) and \(T_2 \) have same total weight.

Minimum Spanning Trees

We will look at two “greedy algorithms” to find an MST of a weighted graph: **Kruskal’s** and **Prim’s** algorithms.

A greedy algorithm makes choices in sequence such that each choice is best according to some limited “short-term” criterion that is not too expensive to evaluate (no look-ahead is involved).

![Diagram of a graph with labeled edges and weights 1, 6, 3, 5, 2, 4, 8]

MST Uses

Finding an MST has proven to be a useful technique in finding maximum bandwidth channels, circuit design, and in finding neural pathways in the brain.

Finding maximum bandwidth channels in networks requires a simple change to Kruskal’s algorithm:

Kruskal's MST Algorithm

Idea:
- use a greedy strategy
- consider edges in increasing order of weight (sort edges)
- add edge to spanning forest F if adding the edge doesn't create a cycle.

Algorithm MST-Kruskal (G)

1. $R = E$ // R is initially set of all edges
2. $F = \emptyset$ // F is set of edges in a spanning tree of a sub-graph of G
3. sort all edges of R in increasing order of weight
4. while (R is not empty)
5. remove the lightest-weight edge, (v,w), from R
6. if (v,w) does not make a cycle in F
7. add (v,w) to F
8. return F

Kruskal's MST Algorithm

Complexity:
- line 1- Sorting edges = ?? time
- lines 2-5 - Keep edges in a structure with $O(1)$ time
- line 4 - Checking to see if edge creates a cycle = ?? time

Disjoint Sets (Ch. 21)

A disjoint-set data structure
- maintains a collection of disjoint subsets $C = s_1, s_2, \ldots, s_m$, where each s_i is identified by a representative element (set id).

Operations on C:
- Make-Set(x): creates singleton set {x}
- Union(x,y): x and y are id’s of their resp. sets, s_x and s_y; union operation replaces sets s_x and s_y with a set that is $s_x \cup s_y$ and returns the id of the new set.
- Find-Set(x): returns the id of the set containing x.

Data Structures for Disjoint Sets

Comment 1: The Make-Set operation is only used during the initialization of a particular algorithm.

Comment 2: We assume there is an array of pointers to each $x \in U$ (so we never have to search for a particular element, just for the id of the set x is in).

Thus the problems we’re trying to solve are how to join the sets (Union) and how to find the id of the set containing a particular element (Find-Set) efficiently.

Data Structures for Disjoint Sets

Applications include network algorithms such as finding the connected components of a graph.

PROBLEM IS HOW TO KEEP ELEMENTS IN A SET IN SUCH A WAY THAT IT IS A FAST (SUB-LINEAR TIME) OPERATION TO DETERMINE WHETHER A NEW EDGE WILL CREATE A CYCLE.

We determine membership using representative node names for each connected component.

Rooted Tree Representation of Sets

Idea: Organize elements of each set as a tree with id = element at the root, and a pointer from every child to its parent. Also assume we have an array of pointers to each element in the tree.

Make-Set(x): (Initial) $O(1)$ time
- start at x (using pointer provided to find x) and follow pointers up to the root.
- return id of root

Find-Set(x):
- make x a child of (roots of trees).
- return id of y and return y running time is $O(n)$

Comment 2: We assume there is an array of pointers to each element in the tree.
Weighted Union Implementation for Trees

Idea: Add `rank` field to each node `x` holding the number of nodes in subtree rooted at `x` (only care about weight field of roots, even though other nodes maintain rank value too). When doing a Union, make the smaller tree (with lower rank at the root) a subtree of the larger tree (with greater rank at the root).

- `Make-Set(x)`: $O(1)$
- `Find-Set(x)`: See next slide, $O(n)$ w.c.
- `Union(x, y)`:
 - x and y are ids (roots of trees).
 - make node (x or y) with smaller rank the child of the other
 - $O(1)$ time

```
Weighted Union
Theorem: Any $k$-node tree created by $k-1$ weighted Unions has height $O(\lg k)$ (assume we start with Make-Set on $k$ singleton sets). We want to show that trees stay "short".
Proof: By induction on $k$, the number of nodes in forest.
Basis: $k = 1$, height = 0 = $\lg 1$.\text{<true>}

Inductive Hypothesis: Assume true for all $i < k$.
Inductive Step: Show true for $k$. Suppose the last operation performed was union($x,y$) and that if $m = w(x)$ and $w(y) \leq w(x)$, that $m \leq k/2$.
```

Path Compression Implementation

Idea: extend the idea of weighted union (i.e., unions still weighted), but on a `Find-Set(x)` operation, make every node on the path from x to the root (the node with the set id) a child of the root.

```
Path Compression Analysis
The running time for $m$ (find or union) disjoint-set operations on $n$ elements is $O(mlg^*n)$.

The full proof is given in our textbook.
```

Kruskal’s MST Algorithm

Idea: Make each node a singleton set.

Sort edges, then add the minimum-weight edge (u,v) to the MST if u and v are not already in same sub-graph.

Use weighted union with path compression during find-set operations to determine when nodes are in same sub-graph.

```
Kruskal’s MST Algorithm
Running Time
* initialization (lines 1-3) – $O(1) + O(V) + O(E \lg E) = O(V + E \lg E)$
* $E$ iterations of for-loop (line 4)  
  - $2E$ finds – $O(E \lg^* E)$ time  
  - $O(V)$ unions = $O(V)$ time (at most $V - 1$ unions)
* total: $O(V + E \lg E) = O(E \lg V)$ time  
  - (note $\lg E = O(\lg V)$ since $E = O(V^2)$, so $\lg E = 2 \lg V$).
```

```
MS-T (G) = (V, E)  
1. $T = \emptyset$  
2. for each $v \in V$
    - make-set($v$)  
3. sort edges in $E$ by increasing (non-decreasing) weight
4. for each $(u,v) \in E$
    - if find-set($u$) $\neq$ find-set($v$)
        - $T = T \cup (\{u,v\})$  
        - *add edge to MST**
5. return $T$
```
Correctness of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm produces an MST on $G = (V, E)$.

Proof: Clearly, the algorithm produces a spanning tree. We need to argue that it is an MST.

Suppose, in contradiction, the algorithm does not produce an MST.

Suppose T is the current tree (a greedy strategy).

- at each iteration, chooses the lowest weight edge that goes out from the current tree (a greedy strategy).

Let e be the value such that $e \in E$ but $e \notin T$.

Then PQ does not contain an edge (u, v) with $v \in T$.

Idea: Associate with each node v two fields:

- $\pi(v)$: if v is not in T, then holds the name of the node $\pi(v)$ in T such that $\delta(u, \pi(v))$ is v’s best edge to node in T.

- $\pi(v)$ and $\delta(u, \pi(v))$ are added to the MST by Kruskal’s algorithm.

Correctness of Kruskal’s Algorithm (cont.)

- let e^* be the edge in $T \cup (e_i)$ that forms a cycle when e_i is added to T that is not in $e_1, e_2, …, e_i$, e_i is not a subset of any MST.

Then $\delta(e_i) < \delta(e^*)$, otherwise the algorithm would have picked e^* next in sorted order when it picked e_i (by assumption that T, with e^*, is not an MST because the algorithm does not find an MST).

Claim: $T' = T - \{e^*\} \cup \{e_i\}$ is a MST

- T' is a spanning tree since it contains all nodes and has no cycles.

- $\delta(T') < \delta(T)$, so T is not a MST

This contradiction means our original assumption must be wrong and therefore the algorithm always finds an MST.\blacksquare

Prim’s MinST Algorithm

Algorithm starts by selecting an arbitrary starting vertex, and then “branching out” from the part of the tree constructed so far by choosing a new vertex and edge at each iteration.

Idea:
- always maintains one connected subgraph (different from Kruskal’s)
- at each iteration, chooses the lowest weight edge that goes out from the current tree (a greedy strategy).

Prim’s MST Algorithm

Idea: Use a min priority queue PQ that uses the set field as a key.
Associate with each node v two fields:

- $\pi(v)$: if v isn’t in T, then holds the name of the node $\pi(v)$ in T such that $\delta(u, \pi(v))$ is v’s best edge to node in T.

- $\pi(v)$ and $\delta(u, \pi(v))$ are added to the MST by Prim’s algorithm.

As min set edges are discovered they are added to T.

MST-Kruskal (G)
1. $T = \emptyset$
2. for each $v \in V$
3. sort edges in E by increasing weight
4. for each $(u, v) \in E$ sorted E
 if find $(u) \neq find(v)$ // doesn’t create a cycle **/
 $T = T \cup ((u, v))$ // ** add edge to T **/
 union(find(u), find(v))
5. return T

Correctness of Prim’s Algorithm

Proof: Prim’s algorithm produces a spanning tree T. We need to argue that it is an MST.

Suppose, in contradiction, that the algorithm does not produce an MST.

Then $\delta(T)$, i.e., the minimum weight of an edge incident on some vertex in V that is not in T.

Let e^* be the edge of minimum weight that is not in T.

Claim: $T' = T \cup \{e^*\}$ is a MST

- T' is a spanning tree since it contains all nodes and has no cycles.

- $\delta(T') = \delta(T) + \delta(e^*)$, so T is not a MST

This contradiction means our original assumption must be wrong and therefore the algorithm always finds an MST.\blacksquare
Prim's MST Algorithm

Start at node a: PQ contains all nodes:

iteration 1: PQ = PQ – {a}

iteration 2: PQ = PQ – {b}

iteration 3: PQ = PQ – {e}

iteration 4: PQ = PQ – {d}

iteration 5: PQ = PQ – {g}

iteration 6: PQ = PQ – {c, d, g, h} due to (c,e), (d,e), (g,e), and (c,h)

iteration 7: PQ = PQ – {h} = ∅

T = $(a,b), (a,e), (e,g), (c,e), (f,g), (g,h))$ (no change to wt field at any node)

DONE

Running Time of Prim's MST Algorithm

• Assume PQ is implemented with a binary min-heap

• How can we tell if $v \notin PQ$ without searching heap?

Keep an array of booleans indexed by the nodes indicating if node is in heap

MST-Prim (G, r)
1. insert each $v \in V$ into PQ with $wt(v) = \infty$ or ∞ if $v=r$
2. cost = 0 / cost of MST
3. while PQ ≠ ∅
4. if $v \in PQ$ and $v \neq r$
5. add edge (u, v) to T
6. for each node u of T
7. if $v \notin PQ$ and $wt(u, v) < \infty$
8. $v = u$
9. $v \notin w(u, v)$

Running Time of Prim's MST Algorithm

• Assume PQ is implemented with a binary min-heap

• How can we tell if $v \notin PQ$ without searching heap?

Keep an array of booleans indexed by the nodes indicating if node is in heap

MST-Prim (G, r)
1. insert each $v \in V$ into PQ with $wt(v) = \infty$ or ∞ if $v=r$
2. cost = 0 / cost of MST
3. while PQ ≠ ∅
4. if $v \in PQ$ extract-min()
5. add edge (u, v) to T
6. for each node u of T
7. if $v \notin PQ$ and $wt(u, v) < \infty$
8. $v = u$
9. $v \notin w(u, v)$
Running Time of Prim’s MST Algorithm

Running time:
* Initialize PQ: $O(V)$ time
* while loop... in each of V iterations of while loop:
 - extract min = $O(\lg V)$ time
 - update $T = O(1)$ time
 \Rightarrow $O(V \lg V)$ total over all iterations (combined):
 - check neighbors of u (line 6-9): $O(E)$ iterations
 - condition test and update $\pi = O(1)$ time
 - decreasing v’s $\text{wt} = O(\lg V)$ time
\Rightarrow $O(E \lg V)$

So, the grand total is:
$O(V \lg V + E \lg V) = O(E \lg V)$ (asymptotically, the same as Kruskal’s)

Correctness of Prim’s Algorithm

Let T_i be the tree after the ith iteration of the while loop

Lemma: For all i, T_i is a subtree of some MST of G.

Proof: by induction on i, the number of iterations

Basis: when $i = 0$, $T_0 = \emptyset$, ok - because empty is trivial MST subtree

IHOP: Assume T_i is a subtree of some MST M

Induction Step: Show that T_{i+1} is a subtree of some MST M

Maximum Spanning Trees

Definition: Given an undirected graph $G = (V, E)$ with weights on the edges, a maximum spanning tree of G is a subgraph $T \subseteq E$ such that:

- connects all nodes in V
- has no cycles (i.e., is a tree), and
- has a sum of edge weights that is maximum over all possible spanning trees of G.

-\[\begin{align*}
\text{a} & \quad 1 \quad \text{b} \quad 6 \\
\text{c} & \quad \text{d} \quad \text{e} \quad \text{f} \quad \text{g} \quad \text{h} \\
\text{a} & \quad 1 \quad \text{b} \quad 6 \\
\text{c} & \quad \text{d} \quad \text{e} \quad \text{f} \quad \text{g} \quad \text{h} \\
\end{align*} \]