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Definition:  Given an undirected, unweighted graph  
G = (V, E), a spanning tree of G is any subgraph of G that 
is a tree 

Spanning Trees (Ch. 23) 
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Assign a weight (a numerical value) to each edge of the 
graph.  
Examples:  

1.  a road network, the weights could represent the length of 
each road;  

2.  a network of connecting flights, weights could represent 
flight time; 

3.  a computer network, the weights could represent the 
bandwidth of each bus and link. 

4.  length of wire needed to connect gates in a circuit. 

Weighting edges 

Definition:  Given an undirected graph G = (V, E) with weights on  
the edges, a minimum spanning tree of G is a subgraph T ⊆ E  
such that T:     

o  is a spanning tree of G 
o  has no cycles (i.e., is a tree), and 
o  has a  sum of edge weights that is minimum over 

 all possible spanning trees of G. 

Minimum Spanning Trees 
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MST property:  Let G = (V, E) and let T be any spanning 

tree of G.  Suppose that for every edge (u,v) of G that is not 

in T, if (u,v) is added to T it creates a cycle such that (u,v) is 
a maximum weight edge on that cycle.  Then T has the MST 

property. 
 
If there are 2 spanning trees T1 and T2 on G that both have 

the MST property, then T1 and T2 have same total weight.  

MST Property 

We will look at two “greedy algorithms” to find an MST of a 
weighted graph:  Kruskal's and Prim's algorithms 
 

A greedy algorithm makes choices in sequence such that each 
choice is best according to some limited “short-term”criterion 

that is not too expensive to evaluate (no look-ahead is 
involved).   

Minimum Spanning Trees 

a b c 

d 
f 

e 
g h 

1 6
3

6 2
5

4 7

82

3

5

Finding an MST has proven to be a useful technique 
in finding maximum bandwidth channels, circuit 

design, and in finding neural pathways in the brain. 

 
Finding maximum bandwidth channels in networks 

requires a simple change to Kruskal's algorithm: 

 N. Malpani, J. Chen / Information Processing Letters 83 (2002) 
175–180 
 

MST Uses 
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Kruskal's MST Algorithm 
Idea:   
  -  use a greedy strategy 
  -  consider edges in increasing order of weight (sort edges) 

  -  add edge to spanning forest F if adding the edge doesn’t  
     create a cycle. 

Algorithm MST-Kruskal (G) 
   R = E  // R is initially set of all edges 
   F = ∅ // F is set of edges in a spanning tree of a sub-graph of G 
1.  sort all edges of R in increasing order of weight 
2.  while (R is not empty) 
3.      remove the lightest-weight edge, (v,w), from R 
4.      if (v,w) does not make a cycle in F 
5.              add (v,w) to F 
6.  return F             

Kruskal's MST Algorithm 
Complexity:   
  line 1-  Sorting edges = ?? time 
  lines 2-5 -  Keep edges in a structure with O(1) time  
  line 3-  Removal = ?? time per removal 
  line 4 - Checking to see if edge creates a cycle = ?? time 

Algorithm MST-Kruskal (G) 
   R = E  // R is initially set of all edges 
   F = ∅ // F is set of edges in a spanning tree of a sub-graph of G 
1.  sort all edges of R in non-decreasing order of weight 
2.  while (R is not empty) 
3.      remove the lightest-weight edge, (v,w), from R 
4.      if (v,w) does not make a cycle in F 
5.              add (v,w) to F 
6.  return F             

Disjoint Sets (Ch. 21) 
A disjoint-set data structure  

o  maintains a collection of disjoint subsets  
C = s1,s2,…,sm, where each si  is identified by a 
representative element (set id).  
 

 

Operations on C: 
•  Make-Set(x):  creates singleton set {x} 

 
•  Union(x,y):  x and y and are id’s of their resp. sets, sx and sy; 

union operation replaces sets sx and sy with a set that is sx ∪ sy 
and returns the id of the new set. 
 

•  Find-Set(x):  returns the id of the set containing x. 

 

Data Structures for Disjoint Sets 

Applications include network algorithms such as finding 
the connected components of a graph.
 

PROBLEM IS HOW TO KEEP ELEMENTS 
IN A SET IN SUCH A WAY THAT IT IS A FAST
(SUB-LINEAR TIME) OPERATION TO 
DETERMINE WHETHER A NEW EDGE WILL 
CREATE A CYCLE.  

We determine membership using representative node
names for each connected component.
 

 

Data Structures for Disjoint Sets 
Comment 1:  The Make-Set operation is only used during the 

initialization of a particular algorithm. 
 

Comment 2:  We assume there is an array of pointers to each 
x ∈ U (so we never have to search for a particular 

element, just for the id of the set x is in).   
 

 Thus the problems we’re trying to solve are how to join 
the sets (Union) and how to find the id of the set 
containing a particular element (Find-Set) efficiently. 

 

 

Rooted Tree Representation of Sets 
Idea:  Organize elements of each set as a tree with id = element at the 
root, and a pointer from every child to its parent. Also assume we have 
an array of pointers to each element in the tree. 

Make-Set(x):  (initial) O(1) time 
 
Find-Set(x): 
-  start at x (using pointer provided  
   to find x) and follow pointers up to 
   the root. 
-   return id of root 

w-c running time is O(n) 

Union(x, y): 
-  x and y are ids (roots of trees). 
-   make x a child of y and return y 

running time is O(1) 

x

y

x y∪
x

y=
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Weighted Union Implementation for Trees 
Idea:  Add rank field to each node x holding the number of nodes in 
subtree rooted at x (only care about weight field of roots, even though 
other nodes maintain rank value too). When doing a Union, make the 
smaller tree (with lower rank at the root) a subtree of the larger tree 
(with greater rank at the root). 

Make-Set(x):  O(1) 
 
Find-Set(x): 
-  ??? See next slide, O(n) w.c. 

Union(x, y): 
-  x and y are ids (roots of trees). 
-  make node (x or y) with smaller    
   rank the child of the other 
-  O(1) time 

x y∪
y=

x

rankx = 4

ranky = 3

rankx = 7

Weighted Union 
Theorem:  Any k-node tree created by k-1 weighted Unions has height O(lg k) 
(assume we start with Make-Set on k singleton sets).  We want to show that 
trees stay “short”. 

Show h = max(hx + 1, hy) ≤ lg k. The IHOP must hold for trees x and y. 
 
•   hx + 1 ≤ lg(m) + 1 ≤ lg(k/2) + 1 = lg k – 1 + 1 = lg k 
•   hy ≤ lg(k – m) ≤ lg k (for positive m) 

x y

m
nodes

k - m
nodes

hx hy∪ = x
m

nodes

y
k - m
nodes

h

 

Proof:  By induction on k, the number of nodes in forest. 
Basis:  k = 1, height = 0 = lg 1  <true> 
Inductive Hypothesis:  Assume true for all i < k. 
Inductive Step:  Show true for k.  Suppose the last operation performed was 
union(x,y) and that if m = wt(x) and wt(x) ≤ wt(y), that m ≤ k/2. 

Path Compression Implementation 

Idea:  extend the idea of weighted union (i.e., unions still weighted), but 
on a Find-Set(x) operation, make every node on the path from x to the 
root (the node with the set id) a child of the root. 

Find-Set(x) still has worst-case time of O(lgn), but subsequent Find-Sets for 
nodes that used to be ancestors of x (or subsequent finds for x itself) will 
now be very fast: O(1). 

a
b

c
d

x
a

b c d

x

Path Compression Analysis 

The running time for m (find or union) disjoint-set operations on n 
elements is  
 

O(mlg*n) 
 

The full proof is given in our textbook. 

Kruskal’s MST Algorithm 

MST-Kruskal (G) /** G = (V, E) **/ 
1.   T = ∅ 
2.   for each v ∈ V 
           make-set(v) 
3.   sort edges in E by increasing (non-decreasing) weight 
4.   for each (u,v) ∈ E              
            if  find-set(u) ≠ find-set(v)      
                 T = T ∪ {(u,v)}      /** add edge to MST **/ 
           union(find-set(u), find-set(v))  
5.   return t 

Idea:  Make each node a singleton set. 
Sort edges, then add the minimum-weight edge (u,v) to the MST if u  
and v are not already in same sub-graph.   
Use weighted union with path compression during find-set operations to 
determine when nodes are in same sub-graph.   

Kruskal's MST Algorithm 
Running Time 
 

*  initialization (lines 1-3) –  
 O(1) + O(V) + O(E lg E) = O(V + E lg E) 

 
 

*  E iterations of for-loop (line 4) 
  -  2E finds – O(E lg*E) time 
  -  O(V) unions = O(V) time (at most V – 1 unions) 
 
 

•  total: O(V + E lg E) = O(E lg V) time 
 
  - (note lg E = O(lgV) since E = O(V2), so lgE = 2 lg V). 
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MST-Kruskal (G) 
1.   T = ∅ 
2.  for each v ∈ V 
            makeset(v) 
3.    sort edges in E by increasing weight 
4.    for each (u,v) ∈  sorted E   
            if  find (u) ≠ find(v) /** doesn’t create a cycle **/   
                   T = T ∪ {(u,v)}  /** add edge to MST **/ 

        union(find(u), find(v))  
5.   return T 

List the edges in the above graph in a possible order they 
are added to the MST by Kruskal’s algorithm. Which edges 
would not be added? 
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MST-Kruskal (G) 
1.   T = ∅ 
2.  for each v ∈ V 
            makeset(v) 
3.    sort edges in E by increasing weight 
4.    for each (u,v) ∈  sorted E   
            if  find (u) ≠ find(v) /** doesn’t create a cycle **/   
                   T = T ∪ {(u,v)}  /** add edge to MST **/ 

        union(find(u), find(v))  
5.   return t 
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Correctness of Kruskal's Algorithm 
Theorem:  Kruskal's  algorithm produces an MST on G = (V, E). 
 
Proof:   Clearly, the algorithm produces a spanning tree.  We need 
to argue that it is an MST. 
 

Suppose, in contradiction, the algorithm does not produce an MST. 
Suppose that the algorithm adds edges to the tree T' in order  
                                      e1, e2, ..., ei,…, en-1.    
 
Let i be the value such that e1, e2, …, ei-1 is a subset of some MST T,  
but e1, e2, …, ei-1, ei  is not a subset of any MST. 
 
 

Consider T  ∪ {ei} 
•   T  ∪ {ei} must have a cycle c involving ei 
•   In the cycle c there is at least one edge that is not in e1, e2, …, ei-1 (since  
   the algorithm doesn’t pick an edge that creates a cycle and it picked ei). 
 

•  let e* be the edge in T ∪ {ei} that forms a cycle when ei is added to 
T that is not in e1, e2, …, ei-1  

 
 Then  wt(ei) < wt(e*), otherwise the algorithm would have picked e* 
 next in sorted order when it picked ei (by assumption that T, with 
e*, is not an MST because the algorithm does not find an MST).  

 
Claim:  T' = T – {e*} ∪ {ei} is a MST 
•  T' is a spanning tree since it contains all nodes and has no cycles. 
•  wt(T') < wt(T), so T is not a MST  
 
This contradiction means our original assumption must be wrong 
and therefore the algorithm always finds an MST.   

Correctness of Kruskal's Algorithm (cont.) 

Prim’s MinST Algorithm 
Algorithm starts by selecting an arbitrary starting vertex, and 
then “branching out” from the part of the tree constructed so 
far by choosing a new vertex and edge at each iteration. 

 
Idea:   
  -  always maintains one connected subgraph (different from Kruskal's) 
 
  -  at each iteration, chooses the lowest weight edge that goes out from  
     the current tree (a greedy strategy). 

Prim’s MST Algorithm 

Idea:  Use a min priority 
queue PQ that uses the wt field 
as a key. 
Associate with each node v two 
fields: 
•  v.wt :  if v isn’t in T, then 

holds the min wt of all the 
edges from v to a node in T. 

•  v.π:  if v isn’t in T, holds the 
name of the node u in T such 
that wt(u,v) is v’s best edge 
to node in T.  

 

As min wt edges are discovered 
they are added to T.  

MST-Prim (G, r)
1.  insert each v ∈V into PQ with v.wt = ∞,���

v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v.wt = wt(u,v)



11/10/19

5

Prim’s MST Algorithm 
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Start at node a: PQ contains all nodes

a    b    c     d     e     f     g     h
 π
wt

∅   ∅   ∅   ∅    ∅   ∅   ∅    ∅
0    ∞   ∞    ∞     ∞   ∞   ∞    ∞

PQ

iteration 1: PQ = PQ – {a}
a    b    c     d     e     f     g     h

  π
wt

∅    a   ∅    a     a    ∅   ∅    ∅
0    1   ∞    6     3     ∞   ∞    ∞

x PQ

T = {∅} (change b, d, e) because of 
       edges (a,b), (a,e), and (a,d)

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)
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iteration 2:  PQ = PQ – {b}
a    b    c     d     e     f     g     h

  π
  wt

∅    a    b     a     a    ∅   ∅    ∅
0    1    6     6     3    ∞   ∞    ∞

x PQ

T = {(a,b)} (change c due to edge (b,c))

x 

iteration 3:  PQ = PQ – {e}
a    b    c     d     e     f     g     h

  π
  wt

∅    a    e     e     a    ∅   e     e
0    1    3     2    3     ∞   2     8

x PQ

T = {(a,b), (a,e)} (change c, d, g, h) due 
       to (c,e), (d,e), (e,g), and (e,h)

x x 

iteration 4:  PQ = PQ – {d}
a    b    c     d     e     f     g     h

  π
  wt

∅    a    e     e     a    ∅    e     e
0    1    3     2     3    ∞    2     8

x PQ

T = {(a,b), (a,e), (d,e)} (no change to wt field at any node)

x x x 

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)
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iteration 5:  PQ = PQ – {g}

  π
a    b    c     d     e     f     g     h

  wt
∅    a    e     e     a    g     e    g
0    1    3     2     3    4    2    7

x PQ x x x x 

T = {(a,b), (a,e), (d,e), (e,g)} (change f & h)
       due to edges (f,g) and (g,h)

a    b    c     d     e     f     g     h

  wt
∅    a    e     e     a    g     e    g
0    1    3     2     3    4    2    7

x PQ x x x x 
iteration 6:  PQ = PQ – {c}

T = {(a,b), (a,e), (d,e), (e,g), (c,e)} (no change to wt field at any node)

x 
  π

a    b    c     d     e     f     g     h

  wt
∅    a    e     e     a    g     e    g
0    1    3     2     3    4    2    7

x PQ x x x x 
iteration 6:  PQ = PQ – {f}

T = {(a,b), (a,e), (d,e), (e,g), (c,e), (f,g)} (no change to wt field at any node)

  π
x x 

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)
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a    b    c     d     e     f     g     h

  wt
∅    a    e     e     a    g     e    g
0    1    3     2     3    4    2    7

x PQ x x x x 
iteration 7:  PQ = PQ – {h} = ∅

T = {(a,b), (a,e), (d,e), (e,g), (c,e), (f,g), (g,h)}

  π
x x 

DONE

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)

Running Time of Prim’s MST Algorithm 
 

•   Assume PQ is implemented with a binary min-heap  
 
 

•   How can we tell if v ∈ PQ without searching heap?   
 

Keep an array of 
booleans indexed 
by the nodes 
indicating if node 
is in heap  

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)

Running Time of Prim’s MST Algorithm 
 

•   Assume PQ is implemented with a binary min-heap  
 
 

•   How can we tell if v ∈ PQ without searching heap?   
 

Keep an array of 
booleans indexed 
by the nodes 
indicating if node 
is in heap  

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)
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Running Time of Prim's MST Algorithm 
 

 
Running time: 
•  initialize PQ:  O(V) time 
  
•   while loop... 
    in each of V iterations of while loop:  

 extract min = O(lg V) time 
 update T = O(1) time   
     ==> O(V lg V) total 

 
    over all iterations (combined): 

 check neighbors of u (line 6-9):  O(E) iterations 
    condition test and update π = O(1) time 

              decreasing v's wt= O(lg V) time  = O(E lg V) 
So, the grand total is: 

 O(V lg V + E lg V) = O(E lg V) ( asymptotically, the  
     same as Kruskal's) 

MST-Prim (G, r)
1.  insert each v ∈ V into PQ with ���

v.wt = ∞, v.π = ∅
2.  r.wt = 0 // root of MST
3.  while PQ ≠ ∅
4.       u = PQ.extract-min()
5.       add edge (u. π, u) to T
6.       for each neighbor v of u
7.              if v ∈ PQ and wt(u,v) < v.wt
8.                    v.π  = u
9.                    v. wt = wt(u,v)

Correctness of Prim's Algorithm 

Let Ti be the tree after the ith iteration of the while loop 
 

Lemma:  For all i, Ti is a subtree of some MST of G. 
 

Proof:   by induction on i, the number of iterations 
 

Basis:  when i = 0, T0 = ∅, ok - because empty is trivial  
 MST subtree 

 

IHOP:  Assume Ti is a subtree of some MST M 
 

Induction Step:  Show that Ti +1 is a subtree of some MST  
 

Correctness of Prim's Algorithm 
Let (u,v) be the edge added in iteration i + 1.  Then there are 2 cases: 
 
case 1:  (u, v) is an edge of M (the ultimate MST). 
  Then clearly Ti+1 is a subtree of M (ok) 
 
case 2:  (u, v) is not an edge of M 
  We know there is a path p in M from u to v (because M is a ST) 
 
Let (x, y) be the first edge in p with x in Ti and y not in Ti.  We know 
this edge exists because the algorithm will not add edge (u,v) to a cycle. 
 
  M' = M – {(x, y)} ∪ {(u, v)} is another spanning tree. 
 
  Now we note that 
   wt(M') = wt(M) – wt(x, y) + wt(u, v) ≤ wt(M) 
  since (u, v) is the minimum weight outgoing edge from Ti 
 
  Therefore, M' is also a MST of G and Ti+1 is a subtree of M'. 
 

Definition:  Given an undirected graph G = (V, E) with weights on  
the edges, a maximum spanning tree of G is a subgraph T ⊆ E  
such that T:    

o  connects all nodes in V,  
o  has no cycles (i.e., is a tree), and 
o  has a  sum of edge weights that is maximum over 

 all possible spanning trees of G. 

Maximum Spanning Trees 
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