Analysis of Divide-and-Conquer Algorithms

The divide-and-conquer paradigm (Ch.2)

* divide the problem into a number of subproblems

» conquer the subproblems (solve them)

* combine the subproblem solutions to get the solution to the

original problem

Example: Merge Sort

« divide the n-element sequence to be sorted into two n/2-

element sequences.

* conquer the subproblems recursively using merge sort.

* combine the resulting two sorted n/2-element sequences by

merging.

9/12/19

More Math Review

* Floor: |x] = the largest integer <x
* Ceiling: [x]=the smallest integer 2 x
* Summations: (see Appendix A, p.1058)

* Geometric, Telescoping & Harmonic series:
(see Appendix A, p.1060-1061)

Merge-Sort(A,p,r)

1.if p < r then

2. q <« |(ptr)/2]

3 Merge-Sort (A,p,q)
4. Merge-Sort (A,g+l,r)
5 Merge (A,p,q,r)

Initial call:
Merge-sort(A,1, length(a))

The Merge subroutine takes 0(n)
time to merge n elements that are
divided into two sorted arrays of
n/2 elements each.

Merge (A r
1. n« g-p+l; n,« r-q;
2. Create arrays

10.

L[1l...n;+1] and
R[1...n,+1]
for ie- 1 to n,
L[i]e A[p+i-1]
for i« 1 to n,
R[i]« A[g+i]
L[n,;+1] = R[n,+1] = ®
ie je1
for k « p to r
if L[i] = R[j]
A[k]<« L[i]
i« i+l
else A[k]+ RI[j]
J < j+1

Analyzing Divide-and-Conquer Algorithms

A recursive algorithm can often be described by a recurrence equation that
describes the overall runtime on a problem of size n in terms of the runtime
on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

Ttn) = Oa) ifnsc
at(n/b) + D(n) + C(n) otherwise
where
e a = number of subproblems we divide the problem into

e n/b = size of the subproblems (in terms of n)

* D(n) = time to divide the size n problem into subproblems

« (C(n) = time to combine the subproblem solutions to get the
answer for the problem of size n

Analyzing Merge-Sort

[2 8 1 5

4

3 7 6| om-6

2 8 1

Divide

51[4 3 7 6]

(Ign levels)

2 8]|[1 5][a 3][7 6

(2] [&] [1] [s] [4] [5][z] [e]

Analyzing Merge-Sort

[1 2 3 4 5 6 7 8]

erge 1 2 5 8][3 4 6 7
(Ign levels)
(2 8][1 5[[3 4] [6 7]
[2] [8] [1] [s] [4] [3][7] [e]
ctn) = By
T(n) = {9{1) ifn=1
27(n/2) + On) otherwise

Recurrence for worst-case running time for Merge-Sort

Analyzing Merge-Sort

6) ifn=1
2T(n/2) + e(n) otherwise

T(n) =

Recurrence for worst-case running time for Merge-Sort
aT(n/b) + D(n) + C(n)

a =2 (two subproblems)
n/b =n/2 (each subproblem has size approx. n/2)
D(n) = 6(1) (just compute midpoint of array)

C(n) = e(n) (merging can be done by scanning sorted subarrays)

9/12/19

Recursion Tree for Merge-Sort

cn cn
| cn/2 CN/2 — Cl]
Ign + 1 levels
(h=1gn) \
cn/4 cn/4 cn/4 CN/4 el CN
‘ c c c c ‘c c ‘c c e

cnlgn +cn

T(n) = { c ifn=1
2T(n/2)+CN otherwise

Recurrence for worst-case running time of Merge-Sort

