
4/16/19

1

The single-source shortest path problem (SSSP)
input: a digraph G = (V, E) with edge weights, and a specific source 
           node s.
goal:  find a minimum weight (shortest) cumulative path from s to every 

other node in V 

Single-Source Shortest Paths (Ch. 24)
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Weights in SSSP algorithms can include distances, time spans, hops,
length of wire, etc.  These algorithms are used in many routing 
applications.

Note:  BFS finds the shortest paths for the special case when all 
edge weights are 1.  Running time = O(V + E)

The result of a SSSP algorithm can be viewed as a 
tree rooted at s, containing a shortest (wrt weight) 
path from s to all other nodes.

Single-Source Shortest Paths

Some graphs may have negative-weight cycles and these are
a problem for some SSSP algorithms.

Negative-weight cycles
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What is the shortest path from 
a to d and what is the cost?
• path a-c-e-d = -12+3-2 = -11

• path a-c-e-d-a-c-e-d =
 -12+3-2+(10-12+3-2)= -13

S 
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To avoid this problem, some algorithms require that the graph has no 
negative weight cycles, otherwise the solution does not exist.

If we keep going around the cycle   
(d-a-c-e-d), we keep shortening the 
weight of the path.  So the shortest
path has weight -∞

Question:  Can a shortest path contain a positive-weight
cycle?

Single-Source Shortest Paths

No.  

Suppose we have a shortest path p = 〈v0, v1, ..., vk〉 and
c = 〈vi, vi+1, ..., vj〉 is a positive-weight cycle on p so that
 vi = vj  and w(c) > 0.  Then the path (obtained from splicing
out c, p' = 〈v0, v1, ..., vi, vj+1, vj+2,...vk〉 ) has w(p') = 
w(p) – w(c) < w(p).  So p can’t be a shortest path.

Therefore, we can assume, wlog, that shortest paths have no 
cycles.

Chapter 24 presents 3 different SSSP algorithms:
•  Bellman-Ford Algorithm: General case in which edge 

weights may be negative.  Detects negative-weight 
cycles.  

•  SSSP algorithm for DAGs with negative-weight edges 
(but no negative-weight cycles by virtue of being 
acyclic). 

•  Dijkstra's algorithm: Applies to weighted, directed 
graph when all edge weights are nonnegative.

Single-Source Shortest Path Algorithms Procedures used by SSSP Algorithms

Relax (u, v, w(u,v))
1. if v.d > u.d + w(u,v)
2.     v.d = u.d + w(u,v)
3.     v.π = u 

Initialize-Single-Source (G,s)
1.  for each vertex v ∈ G
2.       v.d = ∞
3.       v.π = NIL 
4.   s.d =  0

Attribute v.d is an upper bound on the weight of the shortest 
path from source s to v, or a “shortest path estimate’’

Relax procedure lowers shortest path estimates and changes 
predecessors.  Decreases the value of shortest path estimate.
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Dijkstra’s SSSP Algorithm
Algorithm SSSP-Dijkstra (G, s)
1.  Initialize-Single-Source(G, s)
2.  S = ∅
3.  Q = V[G]  // all vertices put into PQ
4.  while PQ ≠ ∅
5.       u = PQ.Extract-Min()
6.       S = S ∪ {u}
7.       for each outgoing neighbor v of u

 8.               Relax (u, v, w(u,v))

Tree nodes are 
nodes extracted 
from PQ (added 
to S, the set of 
shortest paths).

Fringe nodes (aka nodes in S') are nodes in PQ with v.d < ∞ 

Unseen nodes are nodes in PQ with v.d = ∞

Nodes in S 
represent the 
nodes in the set 
of shortest paths.

Dijkstra's SSSP Algorithm
The labeling and mechanics of Dijkstra's algorithm are like 
Prim's. 

Both construct an expanding subtree of vertices by 
selecting the next vertex from the priority queue of the 
remaining vertices.

However, the two algorithms solve different problems

Dijkstra's algorithm compares path lengths and therefore 
must ADD edge weights, while Prim's algorithm 
compares the edge weights as they are found, with no 
addition of those weights to find path weights.

Dijkstra’s SSSP Algorithm
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S 
8

S is the set of edges
in the shortest path 

Algorithm SSSP-Dijkstra (G, s)
1. Initialize-Single-Source(G, s)
2.  S = ∅
3.  Q = V[G]
4.  while Q ≠ ∅
5.       u = Q.Extract-Min()
6.       S = S ∪ {u}
7.       for each outgoing neighbor v of u
8.              Relax(u, v, w(u, v))

Trace execution
of Dijkstra’s algorithm 
on graph below.

Relax (u, v, w(u,v))
1. if v.d > u.d + w(u,v)
2.     v.d = u.d + w(u,v)
3.     v.π = u 
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S 8

Algorithm SSSP-Dijkstra (G, s)
1. Initialize-Single-Source(G, s)
2.  S = ∅
3.  Q = V[G]
4.  while Q ≠ ∅
5.       u = Q.Extract-Min()
6.       S = S ∪ {u}
7.       for each outgoing neighbor v of u
8.              Relax(u, v, w(u, v))

v.d
v.π

iteration 0:
a    b    c     d     e   
0    ∞   ∞    ∞    ∞

Q

!  !  !   ! !

v.d

iteration 1:  Q = Q – {a}
a    b     c     d     e   
0    2   12   ∞    ∞

Q x 

v.π !   a     a   !   !

iteration 2:  Q = Q – {b}
a    b     c     d     e   

v.d 0    2   10   ∞    11
Q x x 

v.π !   a     b   !    b
iteration 3:  Q = Q – {c}

a    b     c     d     e   
v.d 0    2   10   16   11
Q x x x 

v.π !   a     b      c    b
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S 8

Algorithm SSSP-Dijkstra (G, s)
1. Initialize-Single-Source(G, s)
2.  S = ∅
3.  Q = V[G]
4.  while Q ≠ ∅
5.       u = Q.Extract-Min()
6.       S = S ∪ {u}
7.       for each outgoing neighbor v of u
8.                 Relax(u, v, w(u, v))

iteration 4:  Q = Q – {e}

a    b     c     d     e   
v.d 0    2   10   13   11
Q x x x x 

v.π !   a     b     e     b

iteration 5:  Q = Q – {d}

a    b     c     d     e   
 v.d 0    2   10   13   11
Q

DONE

x x x x x 

!   a     b     e     bv.π

15

Trace table of Dijkstra’s SSSP Algorithm
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S 8

iter u  a.d b.d c.d  d.d   e.d
0 - 0 ∞ ∞ ∞ ∞

1 a 2 12 ∞ ∞

2 b 10 ∞ 11
3 c 16 11
4 e 13
5 d

Note:  blank
means node

has been
extracted 

from
priority 
queue

a.π     !
b.π      a
c.π      b
d.π      e
e.π      b

Running Time of Dijkstra’s SSSP Alg

Steps 1-3:  O(V) time
Steps 4-8:
   V iterations 
   Suppose Extract-Min 
   takes O(XQ) time

Total:  O(VXQ + EYQ) 

Steps 5-8:  E iterations overall
(looks at each edge once)
Suppose Relax takes O(YQ) time.

Algorithm SSSP-Dijkstra (G, s)
1. Initialize-Single-Source(G, s)
2.  S = ∅
3.  Q = V[G]
4.  while Q ≠ ∅
5.       u = Q.Extract-Min()
6.       S = S ∪ {u}
7.       for each outgoing neighbor v of u
8.              Relax(u, v, w(u, v))

Running Time of Dijkstra’s SSSP Alg

If G is dense (i.e., θ(V2) edges):
Asymptotically speaking, there is no point in saving time 
using Extract-Min.  Store each v.d in the vth entry of an array.  
Each insert and decrease-key takes O(1) time.  Extract-Min 
takes O(V) time (why?)
 Total time: O(V2 + E) = O(V2) 

If G is sparse (i.e., o(V2) edges):
Try to minimize time with Extract-Min, using min-heap: 
Time for Extract-Min & Decrease-Key  = O(lgV)

Total time:  O(VlgV + ElgV) = O((V + E) lgV)  

Correctness of Dijkstra’s SSSP Alg

Proof Idea:  The shortest path to a node must include only nodes that 
have already been extracted from Q and added to the set S.  It uses 
contradiction, and the fact that no negative edge weights are allowed, 
to show that, if there is a shorter path to a particular node v that does 
not include all nodes in S, then other vertices along that path would 
have been extracted from Q (and added to S) before v.

Theorem:  Dijkstra's algorithm finds shortest paths from a designated 
source vertex to all other vertices in G. 

s v

z

S

Bellman-Ford SSSP Algorithm
•    Computes single-source shortest paths even when some edges 
     have negative weight. 

•    Can detect if there are any negative-weight cycles in the graph. 
 
•    Processes edges in the same order on each iteration. 

The algorithm has 2 parts: 
Part 1:  Computing shortest paths tree:   

 •  |V| - 1 iterations. 
 •  Iteration i computes the shortest path  
     from s using paths of up to i edges. 

Part 2:  Checking for negative-weight cycles. 
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Bellman-Ford SSSP Algorithm
Bellman-Ford (G, w, s) 
  1.  Initialize-Single-Source(G,w,s) 
  2.  for i = 1 to |V| - 1 
  3.       for each edge (u,v) ∈ E
  4.             Relax(u, v, w(u, v))
  5.  for each edge (u, v) ∈ E 
  6.        if v.d  > u.d + w(u, v) 
  7.             return false 
  8.  return true 

Boolean value returned indicates whether or not 
there is a negative weight cycle in G. True 
indicates there are no negative weight cycles.

Relax (u, v, w(u,v))
1. if v.d > u.d + w(u,v)
2.     v.d = u.d + w(u,v)
3.     v.π = u 

Complexity of Bellman-Ford Algorithm
•   Initialization = O(V) 
•  Decrease-key is called (|V| - 1) ⋅ |E| 

times 
•  Test for negative-weight cycle = O(E) 
 
•  Total:  O(VE) --  so more expensive than  

Dijkstra's, but also more general, since it 
detects graphs with negative weight cycles 
and finds single-source shortest path on 
graphs with negative-weight edges. 

Alternate topological sort
•  The in-degree of vertex u is the number of incoming 

edges incident on u.  The out-degree of vertex u is 
the number of outgoing edges incident on u. 

input:    directed acyclic graph (DAG) 
output:  ordering of nodes s.t. if (u,v) ∈ E, then u comes before       

     v in ordering 
Topological-Sort (G) 
1.  while V is not empty 
2.       remove a vertex u of in-degree 0 and all its outgoing edges. 
3.       insert u at the tail of a linked list of vertices. 

How could we implement this to run in O(V + E) time if G is  
represented with an adjacency list? 

Property of a DAG
•  Why does the previous algorithm work? 
 

Claim:  a DAG G must have some vertex with no  
    incoming edges.  Why? 

 Suppose, in contradiction, that every vertex in G has at least 
one incoming edge.  Choose a vertex v0.  Trace the edge 
incoming at v0 to its source, v1.  Since v1 must have an 
incoming edge, we can follow that edge to its source, v2.  If we 
continue backtracking in this fashion, since there are a finite 
number of vertices, we will eventually return to a previously 
visited vertex.  At this point, we will have discovered a cycle, 
which is a contradiction to our assumption that G is a DAG.  
Therefore, a DAG has at least one vertex with no incoming 
edge (a similar argument holds for outgoing edges). 

SSSPs in DAGs

DAG-Shortest-Paths (G, s) 
1.  Topological-Sort(G) 
2.  Initialize-Single-Source (G,s) 
3.  for each vertex u, taken in topologically sorted order 
4.      for each vertex v adjacent to u 
5.            v.d = min(v.d, u.d + wt(u,v)) 

Note:  There can't be negative-weight cycles in G because 
G is a DAG. 

SSSPs in DAGs
•  In the DAG-Shortest-Paths algorithm the vertices are added to 

the shortest paths tree in topological order. For a given vertex v, 
every incoming edge at v will be relaxed before the shortest 
path distance is set at v (including negative weight edges that 
lower the overall cost of the path). Therefore the shortest paths 
can be found in a DAG with negative weight edges in time no 
greater than the time for DFS = O(V + E). 
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List the shortest path distance from s to every other node in the
DAG shown above.


