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Balanced Binary Search Trees 
A binary search tree can implement any of the basic dynamic-set  
operations in O(h) time.  These operations are O(lgn) if tree is  
"balanced". 
 
BST balancing algorithms:  
 
1st type:  insert nodes as is done in the BST insert, then rebalance tree 
        Red-Black trees: uses rotations & recoloring to balance tree 
        AVL trees: uses rotations to balance tree 
 
2nd type: allow more than one key per node of the search tree: 
        2-3 trees: Uses <= 2 keys per node to keep tree balanced all 
                             the time (also 2-3-4 trees) 
        B-trees:   Lots of keys in each node. Good for storing large    
                  records of data 

 
 

 

AVL Trees
Developed by Russians Adelson-Velsky and Landis (hence AVL).  This 
algorithm is not covered in our text but I've posted a video on our web 
page. 
 

The AVL procedures keep the height of a binary search tree low.  The 

balance factor of node x is the difference in heights of nodes in x's left 
and right subtrees  
 

Definition:  An AVL tree is a BST in which the difference in height between 
left and right subtrees is at most 1. 
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Give the balance factor of all nodes in bst below: 
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AVL Trees
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Example of AVL rotations
Let x.p be the parent and x.p.p be the grandparent of x.   

Case with 2-0 imbalance  
at x.p.p and 0-1 
imbalance at x.p. 
(left rotation of x.p) 

Case with 2-0 imbalance  
at x.p.p and 1-0 
imbalance at x.p.  (right 
rotation of x.p.p) 
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Example of AVL rotations

Case with 0-2 imbalance  
at x.p.p and 1-0 
imbalance at x.p. 
(right rotation of x.p) 

Case with 0-2 imbalance  
at x.p.p and 0-1 
imbalance at x.p.   
(left rotation of x.p.p) 

4

5 3

x11 

5

3

4

0 

0 

x0 0

1

2

00 00

4

5

3

0 

0 

x

1

0 0

2

Tree Height-balanced at x 

AVL Trees
In the case on the left below, the node 23 has just been inserted, creating 
an imbalance at the parent of its parent (node 22). 
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In this case, 25 is right-rotated to put 
23 between 22 and 25, producing the tree  
shown below this tree.  
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Then 23 is left-rotated to be the 
parent of left child 22 and right  
child 25. <*BALANCED*> 

0

1

0

0

20

22

23

25

18

17 19 1

20

0

0



11/3/19

2

AVL trees
For each of these trees, indicate whether they are AVL trees by showing 
the height at each node. 
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Inserting nodes into AVL tree
Insert the following nodes into an AVL tree, in the order specified.  Show 
the balance factor at each node as you add each one.  When an 
imbalance occurs, specify the rotations needed to restore the AVL 
property.  Nodes = <9, 5, 8, 3, 2, 4, 7> 
 

 

 

Red-Black Properties 
Red-Black tree properties: 
1)  Every node is either red or black.    
2)  The root is black.        

3)  Every leaf contains NIL and is black. 
4)  If a node is red, then both its children are black. 

5)  For each node x, all paths from x to its descendant 
leaves contain the same number of black nodes. 
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Black Height bh(x) 
Black-height of a node x:  bh(x) is the number of black nodes 
(including the NIL leaf) on the path from x to a leaf, not 
counting x itself. 

 

 20

22

2521

18

17 19

2

1 1 1

2

1

1

Every node has a 
black-height, bh(x), 
labeled next to node. 
 
For all NIL leaves, 
bh(x) = 0.  
 
For root x, 
bh(x) = bh(T). 

0 0 0 0 0 0 0 0

Red-Black Tree Height
Lemma 13.1:  A red-black tree with n internal nodes has height at most       
                       2lg(n+1). 
  
Start with claim 1:  The subtree rooted at any node x contains at least 
2bh(x) - 1 internal nodes. 
 

Proof is by induction on the height of the node x. 
 

Basis:  height of x is 0 with bh(x) = 0.  Then x is a leaf and its subtree 
contains 20-1=0 internal nodes. 
 

Inductive step:  Consider a node x that has a positive height and 2 
children.  Each child of x has bh either equal to bh(x) (red child) or 
bh(x)-1 (black child). 

Red-Black Tree Height
Claim 1: (cont) The subtree rooted at any node x contains at least  
2bh(x) - 1 internal nodes. 
 

We can apply the Inductive Hypothesis to the children of node x to find 
that the subtree rooted at each child of x has at least 2bh(x)-1 - 1 internal 
nodes.  Thus, the subtree rooted at x has at least 2(2bh(x)-1 - 1 ) + 1 
internal nodes = 2bh(x) - 1 internal nodes. 
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Red-Black Tree Height
Lemma13.1:  (cont.)A red-black tree with n internal nodes has height at  

  most 2lg(n+1). 
 
Rest of proof of lemma:  Let h be the height of the tree.  By property 4 
of RBTs, at least 1/2 the nodes on any root to leaf path are black. 
Therefore, the black-height of the root must be at least h/2. 

 
Thus, by claim 1, n ≥ 2h/2 -1, so n+1 ≥ 2h/2 and, taking the log of both 
sides, lg(n+1) ≥ h/2, which means that h ≤ 2lg(n+1). 
 

 

Red-Black Tree Height
Since a red-black tree is a binary search tree. the dynamic-set operations 
for Search, Minimum, Maximum, Successor, and Predecessor for the 
binary search tree can be implemented as-is on red-black trees, and since 
they take O(h) time on a binary search tree, they take O(lgn) time on a 
red-black tree. 
 

The operations Tree-Insert and Tree-Delete can also be done in O(lgn) 

time on red-black trees.  However, after inserting or deleting, the nodes of 
the tree may have to be moved around to ensure that the red-black 
properties are maintained.  The number of operations to move nodes 
around are constant at each level. 

Operations on Red-Black Trees
All non-modifying bst operations (min, max, succ, pred, search) run in 
O(h) = O(lgn) time on red-black trees. 
 
Insertion and deletion are more complex. 
 

If we insert a node, what color do we make the new node? 
*  If red, the node might violate property 4. 
*  If black, the node might violate property 5. 

If we delete a node, what color was the node that was removed? 
*  Red?  OK, since we won't have changed any black- 

 heights, nor will we have created 2 red nodes in a row.  Also,  
 if node removed was red, it could not have been the root by prop. 2. 

*  Black?  Could violate property 4, 5, or 2. 
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T2T1

T5T4

1. Color p and a BLACK
2. Color g RED
3. Move x to g and keep
    checking for red-red
    violations further up

x is current node; p is parent; 
a is aunt; g is grandparent

T2T1

T3 T5T4

T1…T5 are roots of Red-Black trees

p

RBInsert(x): Parent and Aunt Red
Perform standard binary search tree insertion and color x RED. 
1.  If (x is the root) change x's color to BLACK and return (DONE) 
2.  If parent(x) is BLACK return (DONE) 
3.  If color of aunt(x) is RED: // and parent(x) is RED 
4.        Change color of parent(x) and aunt(x) to BLACK 
5.        Color grandparent(x) to RED 

6.        Change x to grandparent(x) and go to step 1 

p a 

Red-Black Tree Insertion: Aunt Black
If color of aunt(x) is BLACK there are 4 possible configurations for x, 
parent(x) and grandparent(x): 
i.  p is left child of g and x is left child of p (Left Left Case). 
ii.  p is left child of g and x is right child of p (Left Right Case). 
iii.  p is right child of g and x is right child of p (Right Right Case). 
iv.  p is right child of g and x is left child of p (Right Left Case). 
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Aunt Black: Left Left Case
p

T5T4

1. Right rotate g
2. Swap colors of g and p

 x

T2T1

T2T1

T3 T5T4

p

a
T4

g

p is left child of g and x is left child of p

T3

Red-Black Tree Insertion: Aunt Black
If color of aunt(x) is BLACK there are 4 possible configurations for x, 
parent(x) and grandparent(x): 
i.  p is left child of g and x is left child of p (Left Left Case). 
ii.  p is left child of g and x is right child of p (Left Right Case). 
iii.  p is right child of g and x is right child of p (Right Right Case). 
iv.  p is right child of g and x is left child of p (Right Left Case). 
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Aunt Black: Left Right Case
x

T5T4

1. Left rotate p
2. Apply Left Left case to g

 p
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T1 T5T4
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p is left child of g and x is right child of p
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Red-Black Tree Insertion: Aunt Black
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Aunt Black: Left Right Case
x

T5T4

1. Left rotate p
2. Apply Left Left case to g

 p

T2T1

T3T2

T1 T5T4

p

a
T3

g

p is left child of g and x is right child of p

After rotating left at p: g, x, and p form a straight line 
with a red-red-violation. Right rotate at g makes x 
the root (and turns it black), its children p and g are 
turned red. 
 

Red-Black Tree Insertion: Aunt Black
If color of aunt(x) is BLACK there are 4 possible configurations for x, 
parent(x) and grandparent(x): 
i.  p is left child of g and x is left child of p (Left Left Case). 
ii.  p is left child of g and x is right child of p (Left Right Case). 
iii.  p is right child of g and x is right child of p (Right Right Case). 
iv.  p is right child of g and x is left child of p (Right Left Case). 
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Aunt Black: Right Right Case
p1. Left rotate g

2. Swap colors of g and p
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p is right child of g and 
x is right child of p

T3
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Red-Black Tree Insertion: Aunt Black
If color of aunt(x) is BLACK there are 4 possible configurations for x, 
parent(x) and grandparent(x): 
i.  p is left child of g and x is left child of p (Left Left Case). 
ii.  p is left child of g and x is right child of p (Left Right Case). 
iii.  p is right child of g and x is right child of p (Right Right Case). 
iv.  p is right child of g and x is left child of p (Right Left Case). 

g

Aunt Black: Right Left Case
1. Right rotate p
2. Apply Right Right case to g
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p is right child of g and 
x is left child of p
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AVL and RB-Tree Pros and Cons

1.  Search is O(lgn) since AVL trees are always (nearly) balanced.  
 
2.  Insertion and deletion are also O(lgn). 
 
The rotations for insertion and deletion in an AVL may be needed along 
entire leaf to root path, whereas RB trees need only a constant number of 
rotations.  So as a practical rule, RB trees are needed in situations where 
there are frequent insertions and deletions and fewer searches.  AVL trees 
are better for situations where there are many searches (height is always 
about O(lgn))
 
 
 

2-3 Trees
Another set of procedures to keep the height of a binary search tree low.  
  

Definition:  A 2-3 tree is a tree that can have nodes of two kinds: 2-
nodes and 3-nodes.  A 2-node contains a single key and has two 
children, exactly like any other binary search tree node. A 3-node 
contains 2 values and has three children.  

 
A 2-3 tree is always perfectly height balanced. 
 

2-3 Tree Search
Search for a key k in a 2-3 tree: 
 
1.  Start at the root. 
2.  If the root is a 2-node (with only 1 key), look at the right node of the 

root if k is larger than key at root and to the left node of the root if k 
is smaller than key of root. 

3.  If the root is a 3-node (with 2 keys), go to the left child if k is less 
than K1 of root, to the middle child if k is greater than K1 but less than 
K2 of root, and go to the right child if k is greater than K2 of root. 
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2-3 Tree Insert
Insert a key k in a 2-3 tree: (key always inserted in leaf node) 
 
1.  Start at the root. 
2.  Search for k until reaching a leaf.   

a)  If leaf is a 2-node, insert k in proper position in leaf, either 
to the left or right of the key that already exists in the leaf, 

making it a 3-node. 
b)  If leaf is a 3-node, temporarily make the leaf node have 3 

keys: the smallest of the 3 keys is put in the left leaf, the 
largest key is put in the right leaf, and the middle key is 

promoted to the old leaf's parent. This may cause overload 
on the parent leaf and can lead to several node splits along 
the chain of the leaf's ancestors, possibly all the way to the 
root. 

Inserting nodes into 2-3 tree
Insert the following nodes into a 2-3 tree, in the order specified.  When 
an overload occurs, specify the changes needed to restore the 2-3 
property.  Nodes = <9, 5, 8, 3, 2, 4, 7> 
 
 
 

 
A 2-3 tree of height h with the smallest number of keys is a complete tree 
of 2 nodes (height = Θ(lgn)).  A 2-3 tree of height h with largest number 
of keys is a complete tree of 3 nodes, each with 2 keys and 3 children 

(height = Θ(log3n)).  Therefore, all operations are Θ(lgn). 

 

 

B-Trees
Developed by Bayer and McCreight in 1972. 
 

Our text covers these trees in Chapter 18. 
 

B-trees are balanced search trees designed to work well on magnetic 
disks or other secondary-storage devices to minimize disk I/O operations. 

Extends the idea of the 2-3 tree by permitting more than a single key in 
the same node. 
 

Internal nodes can have a variable number of child nodes within some 
pre-defined range, m. 
 

 

B-Trees
A B-Tree of order m (the maximum number of children for each node) is  
a tree which satisfies the following properties : 
1.  Every node has at most m and at least m/2 children. 
2.  The root has at least 2 children. 
3.  All leaves appear in the same level, and carry no information. 
4.  A non-leaf node with k children contains k - 1 keys    
 

B-trees have substantial advantages over alternative 
implementations when node access times far exceed 
access times within nodes. 


