Binary Trees (Ch. 12)

Binary trees are an efficient way of storing data so that searches can be O(lgn).

Used when we need a data structure that supports dynamic set operations, e.g., for tree S and key x (searching is primary purpose of BST)

- INSERT(S, x)
- Search(S, k)
- MINIMUM(S), MAXIMUM(S)
- SUCCESSOR(S, x), PREDECESSOR(S, x)
- Preorder, Inorder and Postorder traversal help to evaluate expressions

Binary Search Trees

Requirements for Binary Search Tree (BST):
1. Must be a binary tree.
2. All keys must be unique (key values are like individual ID numbers).
3. Each node in tree is the root of a BST such that:
 - All nodes to left of root will have keys < root.key, and
 - all nodes to right will have keys > root.key.

Main advantage of BST is rapid search and low memory use; memory use is dependent only on size of data set.

Time of search = O(depth of BST) = maximum number of nodes on root to leaf path.

Binary Search Trees

Every binary tree node (internal or leaf) contains a key. These keys are unique.

Binary Search Tree Property: For every node x in tree,

- y.key < x.key for every y in x.left (left subtree of x)
- y.key > x.key for every y in x.right (right subtree of x)

BST has stronger requirements than heaps do.

These dynamic set operations are supported on BST S and key x

- INSERT(S, x), DELETE(S, x)
- SEARCH(S, x), MINIMUM(S), MAXIMUM(S)
- SUCCESSOR(S, x), PREDECESSOR(S, x)
- InorderTraversal(S, x) (to list or print sorted set)

Binary Search Trees

A BST can be implemented as either a hierarchical list or as a sequential array.

The hierarchical list representation is better in terms of storage required, because only the amount of storage needed is used. Most algorithms are written for a hierarchical tree with fields for key, right, and left subtrees (and a parent pointer if needed).

The sequential array implementation has better performance when the BST is complete—otherwise there are holes in the array = wasted memory.

parent of A[i] is at A[floor of i/2]

Structure of bst nodes

Each bst node contains fields left, right, and key. Each bst node is the root of a binary search tree. Assume all keys are unique and all leaves are NIL (singly-linked bst)

```
    X
   /   
  E     R
 / \    / \ 
F  T  G  H  
```

keys < x.key or NIL keys > x.key or NIL
Structure of bst nodes
A doubly-linked bst node contains fields left, right, parent and key. Each bst node is the root of a binary search tree.

keys < x.key or NIL
keys > x.key or NIL

Binary Search Trees
The BST's total ordering does the heap's partial ordering one better; not only is there a relationship between a BST node and its children, but there is also a relationship between the children, i.e. the value of a node's left child is always less than the value of its right child.

BST Insert
Insert(T, z)
1. y = NIL
2. x = T.root
3. while x ≠ NIL
4. y = x
5. if z.key < x.key
6. x = x.left
7. else
8. x = x.right
9. z.parent = y
10. if y = NIL
11. then x = NIL & parent of z is set to y
12. else if z.key < y.key
13. then y.left = z
14. else y.right = z
15. return x

Input is a BST T and a node z such that z.left = z.right = z.parent = NIL.
All leaves in T are NIL.
Every node is inserted as a leaf.

BST Search
Iterative-Tree-Search(x, k) Recursion-Tree-Search(x, k)
1. if (x == NIL) or (k == x.key) return x
2. if (k < x.key) return Recursion-Tree-Search (x.left, k)
3. else return Recursion-Tree-Search (x.right, k)

Both have running times of O(h), where h is the height of the tree.

BST Min & Max
The minimum element in a BST can always be found by following left child pointers to a leaf (until a NIL left child pointer is encountered). Likewise, the maximum element can be found by following right child pointers to a leaf.

Tree-Minimum(x)
while x.left ≠ NIL
x = x.left
return x
Tree-Maximum(x)
while x.right ≠ NIL
x = x.right
return x

Both have running times of O(h), where h is the height of the tree.

BST Inorder Successor
In a BST, the Inorder Successor of x can also be defined as the node with the smallest key greater than the key x. This algorithm is used when deleting a node from a BST.

1. if x has a right child, then x.successor is the smallest node in the subtree rooted at x.right.
2. if x has no right child, then x.successor is the nearest ancestor of x whose left child is either an ancestor of x or x itself.

Tree-Successor(x)
1. if x.right ≠ NIL
2. return Tree-Minimum(x.right)
3. temp = x.parent
4. while temp ≠ NIL and x == temp.right
5. x = temp
6. temp = temp.parent
7. return temp

Both have running times of O(h), where h is the height of the tree.
BST Inorder Successor

Case where \(x.\text{right} \) is not equal to NIL

Tree-Successor(x)

1. if \(x.\text{right} \neq \text{NIL} \)
2. return Tree-Minimum(\(x.\text{right} \))

BST Inorder Predecessor

Tree-Predecessor(x)

1. if \(x.\text{left} \neq \text{NIL} \)
2. then return Tree-Maximum(\(x.\text{left} \))
3. temp = \(x.\text{parent} \)
4. while temp \(\neq \text{NIL} \) and \(x = \text{temp.\,right} \)
5. \(x = \text{temp} \)
6. temp = temp.\,parent
7. return temp

BST Delete

Input: BST T and node z to be deleted. Three cases:

1. \(x \) has no children. Just remove it.
2. \(x \) has only one child. Splice out \(x \), by letting \(x.\text{child} \) replace \(x \).

BST Delete

1. if \(z.\text{left} \equiv \text{NIL} \) or \(z.\text{right} \equiv \text{NIL} \)
2. \(y = z \)
3. else
4. \(y = \text{Tree-Successor}(z) \)
5. if \(y.\text{left} \equiv \text{NIL} \)
6. \(x = y.\text{right} \)
7. else
8. \(x = y.\text{left} \)
9. if \(x \equiv \text{NIL} \)
10. \(x.\text{parent} = y.\text{parent} \)
11. \(\text{T\,root} = x \)
12. else
13. if \(y \equiv y.\text{parent.\,left} \)
14. \(y.\text{parent.\,right} = x \)
15. else
16. \(x = y.\text{parent.\,right} \)
17. if \(x \neq \text{NIL} \)
18. swap key[x] and key[y]
19. return y

Cases where x.right = NIL

1. if \(x.\text{right} \neq \text{NIL} \)
2. \(\text{return} \) Tree-Minimum(\(x.\text{right} \))
3. temp = \(x.\text{parent} \)
4. while temp \(\neq \text{NIL} \) and \(x = \text{temp.\,right} \)
5. \(x = \text{temp} \)
6. temp = temp.\,parent
7. \(\text{return} \) temp

Cases where x.left = NIL

1. if \(x.\text{left} \neq \text{NIL} \)
2. then return Tree-Maximum(\(x.\text{left} \))
3. temp = \(x.\text{parent} \)
4. while temp \(\neq \text{NIL} \) and \(x = \text{temp.\,left} \)
5. \(x = \text{temp} \)
6. temp = temp.\,parent
7. \(\text{return} \) temp

Cases where x.left not equal to NIL

1. if \(x.\text{left} \neq \text{NIL} \)
2. then return Tree-Maximum(\(x.\text{left} \))
3. temp = \(x.\text{parent} \)
4. while temp \(\neq \text{NIL} \) and \(x = \text{temp.\,left} \)
5. \(x = \text{temp} \)
6. temp = temp.\,parent
7. \(\text{return} \) temp

Input: BST T and node z to be deleted. Three cases:

1. \(z \) has two children. Find \(z \)'s successor \(y \), which has at most one child.
 - Since \(y \) is \(z \)'s successor, then \(y \) can have no left child, but it may have a right child.
2. If \(y \) is \(z \)'s right child, then replace \(z \) by \(y \), leaving \(y \)'s right child as is.
3. If \(y \) is in \(z \)'s right subtree, but is not \(z \)'s right child, first replace \(y \) by its own right child and replace \(z \) by \(y \).
BST Transplant

Replaces one subtree (rooted at u) with another subtree (rooted at v).

When Transplant replaces the subtree rooted at node u with the subtree rooted at node v, node u's parent becomes node v's parent and node u's parent sets node v as its appropriate child.

This procedure simplifies the code for deleting a node from a BST.

BST Tree-Delete with Transplant

Tree-Delete(T, z)
1. if z.left == NIL ;; Case 1 or 2
2. Transplant(T, z, z.right) ;; Case 2
3. else if z.right == NIL ;; Case 3
4. Transplant(T, z, z.left)
5. else
6. y = Tree-Minimum(z.right) ;; Case 3
7. if y.p != z
8. Transplant(T, y, y.right) ;; Case 3
9. y.right.p = y
10. Transplant(T, z, y) ;; Case 3
11. y.left = z
12. y.left.p = y

Case 1: z is a leaf
Case 2: z has one child
Case 3: z has two children

Postorder Traversal

Postorder traversal is a recursive algorithm used to produce a postfix expression from an expression tree. All leaf nodes have NIL left and right children.

Postorder-Tree-Walk(x) /** start at root x **/
1. if x != NIL
2. Postorder-Tree-Walk(x.left)
3. Postorder-Tree-Walk(x.right)
4. visit the root

Running time = \(\Theta(n) \) (each node must be visited at least once)

Preorder Traversal

Preorder traversal is a recursive algorithm that is used to get a prefix expression from an expression tree. All leaf nodes have NIL left and right children.

Preorder-Tree-Walk(x) /** start at root x **/
1. if x != NIL
2. visit the root
3. Preorder-Tree-Walk(x.left)
4. Preorder-Tree-Walk(x.right)

Running time = \(\Theta(n) \) (each node must be visited at least once)

Inorder Traversal

Inorder-Tree-Walk(x) /** start at root x **/
1. if x != NIL
2. Inorder-Tree-Walk(x.left)
3. visit the root
4. Inorder-Tree-Walk(x.right)

In a BST, inorder-Tree-Walk(root) visits the keys in ascending order.

Running time = \(\Theta(n) \) (each node must be visited at least once)
Expression Trees

A binary expression tree is a specific kind of a binary tree used to represent arithmetic expressions. An inorder traversal yields an infix arithmetic expression.

Minimizing Running Time

Problem: worst case for binary search tree height is $\Theta(n)$ - no better than a linked list.

Solution: Guarantee tree has small height by making sure it is balanced so that $h = O(\log n)$.

Method: restructure the tree if necessary. No extra work for searching, but requires extra work when inserting or deleting.

Red-black, AVL and 2-3 trees: special cases of binary trees that avoid the worst-case behavior by ensuring that the tree is nearly balanced at all times.