
10/8/19

1

Binary Trees (Ch. 12)
Binary trees are an efficient way of storing data so that searches
can be O(lgn).

Used when we need a data structure that supports dynamic set
operations, e.g., for tree S and key x (searching is primary
purpose of BST)
o  INSERT(S, x)
o  Search(S, k)
o  MINIMUM(S), MAXIMUM(S)
o  SUCCESSOR(S, x), PREDESSOR(S, x)
o  Preorder, Inorder, and Postorder traversal allow us to

evaluate expressions, sort data

Binary Search Trees
Requirements for Binary Search Tree (BST):
1.  Must be a binary tree.
2.  All keys must be unique (key values are like individual ID numbers).
3.  Each node in tree is the root of a BST such that:

•  All nodes to left of root will have keys < root.key, and
•  all nodes to right will have keys > root.key.

Main advantage of BST is rapid search and low memory use; memory
use is dependent only on size of data set.

Time of search = O(depth of BST) = maximum number of nodes on root
to leaf path.

Binary Search Trees
Every binary tree node (internal or leaf) contains a key. These keys are
unique.

Binary Search Tree Property: For every node x in tree,
o  y.key < x.key for every y in x.left (left subtree of x)
o  y.key > x.key for every y in x.right (right subtree of x)

BST has stronger requirements than heaps do.

These dynamic set operations are supported on BST S and key x
o  INSERT(S, x), DELETE(S, x)
o  SEARCH(S, x), MINIMUM(S), MAXIMUM(S)
o  SUCCESSOR(S, x), PREDESSOR(S, x)
o  InorderTraversal(S, x) (to list or print sorted set)

Binary Search Trees
Binary search trees, like heaps, can do most operations quickly
because the operations depend on the height (depth) of the tree.

Unlike heaps, binary search trees keep all the data in semi-sorted order
such that the cost to print all the data in sorted order is linear in the
number of items in the tree. For heapsort, this cost is Θ(nlgn).

We would like all the dynamic set functions mentioned on the last
slide to be O(lgn). However, this good running time depends on the
bst implementation.

Binary Search Trees
A BST can be implemented as either a hierarchical list or as a sequential
array.

The hierarchical list representation is better in terms of storage required,
because only the amount of storage needed is used. Most algorithms are

written for a hierarchical tree with fields for key, right, and left subtrees
(and a parent pointer if needed).

The sequential array implementation has better performance when the
BST is complete...otherwise there are holes in the array = wasted memory.

 left subtree of A[i] = A[2i] right subtree A[i] = A[2i + 1]

 parent of A[i] is at A[floor of i/2]

Structure of bst nodes

Each bst node contains fields left, right, and key. Each bst
node is the root of a binary search tree. Assume all keys are unique
and all leaves are NIL (singly-linked bst)

L
E
F
T

R
I
G
H
T

KEY

keys < x.key
or NIL

keys > x.key
or NIL

x

10/8/19

2

Structure of bst nodes

A doubly-linked bst node contains fields left, right, parent and
key. Each bst node is the root of a binary search tree.

L
E
F
T

PARENT R
I
G
H
T

KEY

keys < x.key
or NIL

keys > x.key
or NIL

x

Binary Search Trees

The BST's total ordering does the heap's partial ordering one
better; not only is there a relationship between a BST node and
its children, but there is also a relationship between the
children, i.e. the value of a node's left child is always less than
the value of its right child.

Every node in the left subtree of node x has a key < x's key and
every node in the right subtree of node x has a key > x's key.

BST Insert
Insert(T, z)
 1. y = NIL
 2. x = T.root
 3. while x ≠ NIL
 4. y = x
 5. if z.key < x.key
 6. x = x.left
 7. else
 8. x = x.right
 9. z.parent == y // x = NIL & parent of z is set to y
10. if y == NIL // z is first node in T, which was previously empty
11. T.root = z
12. else if z.key < y.key
13. y.left = z // z is added to tree as a leaf, the left child of y
14.  else
15.  y.right = z // z is added to tree as a leaf, the right child of y

Input is a BST T and a node z such
that z.left = z.right = z.parent = NIL

All leaves in T are NIL

Every node is inserted as a leaf

BST Search

Recursive-Tree-Search(x, k)
1.  if (x == NIL) or (k == x.key) \\ base cases
2.  return x
3.  if (k < x.key) \\ recursive case 1: search left
4.  return Recursive-Tree-Search (x.left, k)
5.  else \\ recursive case 2: search right
6.  return Recursive-Tree-Search (x.right, k)

Iterative-Tree-Search(x, k)
1.  while (x != NIL) and (k != x.key)
2.  if k < x.key
3.  x = x.left
4.  else
5.  x = x.right
6.  return x

The iterative version
is more efficient, in
terms of space used,
on most computers
(no entries on
function call stack).

Both have
running times of
O(h), where h is
the height of the
tree.

BST Min & Max
The minimum element in a BST can always be found by
following left child pointers to a leaf (until a NIL left child
pointer is encountered). Likewise, the maximum element
can be found by following right child pointers to a leaf.

Tree-Minimum(x)
 while x.left ≠ NIL
 x = x.left
 return x

Both have running times of O(h), where h is the height of
the tree.

Tree-Maximum(x)
 while x.right ≠ NIL
 x = x.right
 return x

BST Inorder Successor

Tree-Successor(x)
1. if x.right != NIL
2.  return Tree-Minimum(x.right)
3.  temp = x.parent
4.  while temp != NIL and x == temp.right
5.  x = temp
6.  temp = temp.parent
7.  return temp

In a BST, the Inorder Successor of x can also be defined as the node with the
smallest key greater than the key x. This algorithm is used when deleting a
node from a BST.

1.  If x has a right child, then x.successor is the smallest node in the
subtree rooted at x.right.

2.  If x has no right child, then x.successor is the nearest ancestor of x
whose left child is either an ancestor of x or x itself.

10/8/19

3

Tree-Successor(x)
1. if x.right != NIL
2.  return Tree-Minimum(x.right)

BST Inorder Successor
20

22

2521

18

17 19

x

Case where x.right is not
equal to NIL

Tree-Successor(x)
1. if x.right != NIL
2.  return Tree-Minimum(x.right)
3.  temp = x.parent
4.  while temp != NIL and x == temp.right
5.  x = temp
6.  temp = temp.parent
7.  return temp

20

16

21

18

17 19

x

temp

20

25

18

17 19

x

14

15

temp

Cases where x.right = NIL

Tree-Predecessor(x)
1. if x.left != NIL then
2.  then return Tree-Maximum(x.left)
3.  temp = x.parent
4.  while temp != NIL and x = temp.left
5.  x = temp
6.  temp = temp.parent
7.  return temp

BST Inorder Predecessor

o  If x has a leftchild, then x.predecessor is the largest node in the
subtree rooted at x.left.

o  If x has no leftchild, then x.predecessor is the nearest ancestor of
x whose right child is either an ancestor of x, or x itself

20

22

2521

18

17 19

x

Case where x.left not
equal to NIL

21

25

20

23

2422

x

temp

18

16

21

2019

x

23

22

temp

Cases where x.left = NIL

Tree-Predecessor(x)
1. if x.left != NIL then
2.  then return Tree-Maximum(x.left)
3.  temp = x.parent
4.  while temp != NIL and x = temp.left
5.  x = temp
6.  temp = temp.parent
7.  return temp

BST Delete
Delete(T, z)
 1. if z.left == NIL or z.right == NIL
 2. y = z
 3. else
 4. y = Tree-Successor(z)
 5. if y.left != NIL
 6. x = y.left
 7. else
 8. x = y.right
 9. if x != NIL
10. x.parent = y.parent
11. if y.parent == NIL
12.  T.root = x
13.  else if y == y.parent.left
14. y.parent.left = x
15. else
16. y.parent.right = x
17. if y ≠ z
18. swap key[z] and key[y]
19. return y

Input: BST T and node z to be
deleted. Three cases:���

1) z has no children. Just remove it.���

2)   z has only one child. Splice out z,���
by letting z’s child replace z.

BST Delete
Delete(T, z)
 1. if z.left == NIL or z.right == NIL
 2. y = z
 3. else
 4. y = Tree-Successor(z)
 5. if y.left != NIL
 6. x = y.left
 7. else
 8. x = y.right
 9. if x != NIL
10. x.parent = y.parent
11. if y.parent == NIL
12.  T.root = x
13.  else if y == y.parent.left
14. y.parent.left = x
15. else
16. y.parent.right = x
17. if y ≠ z
18. swap key[z] and key[y]
19. return y

3)   z has two children. Find z’s
successor y, which has at most one
child.

Since y is z's successor, then y can
have no left child, but it may have
a right child.

If y is z's right child, then replace z
by y, leaving y's right child as is.

If y is in z's right subtree, but is not
z's right child, first replace y by its
own right child and replace z by y.

10/8/19

4

Postorder Traversal
Postorder traversal is a recursive algorithm used to produce
a postfix expression from an expression tree. All leaf nodes
have NIL left and right children.

Postorder-Tree-Walk(x) /** start at root x **/
1.  if x != NIL
2.  Postorder-Tree-Walk(x.left)
3.  Postorder-Tree-Walk(x.right)
4.  visit the root

Running time = Θ(n) (each node must be visited
at least once)

Preorder Traversal
Preorder traversal is a recursive algorithm that is used to get
a prefix expression from an expression tree. All leaf nodes
have NIL left and right children.

Preorder-Tree-Walk(x) /** start at root x **/
1.  if x != NIL
2.  visit the root
3.  Preorder-Tree-Walk(x.left)
4.  Preorder-Tree-Walk(x.right)

Running time = Θ(n) (each node must be visited
at least once)

Inorder Traversal

Inorder-Tree-Walk(x) /** start at root x **/
1.  if x != NIL
2.  Inorder-Tree-Walk(x.left)
3.  visit the root
4.  Inorder-Tree-Walk(x.right)

In a BST, inorder-Tree-Walk(root) visits the keys
in ascending order.

Running time = Θ(n) (each node must be visited
at least once)

Expression Trees
A binary expression tree is
a specific kind of a binary
tree used to represent
arithmetic expressions.
An inorder traversal yields
an infix arithmetic
expression.

Minimizing Running Time
Problem: worst case for binary search tree height is Θ(n) - no better

than a linked list.

Solution: Guarantee tree has small height by making sure it is balanced

so that h = Ο(lgn).

Method: restructure the tree if necessary. No extra work for searching,
but requires extra work when inserting or deleting.

Red-black, AVL and 2-3 trees: special cases of binary trees that avoid the
worst-case behavior by ensuring that the tree is nearly balanced at all
times.

