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Binary Trees (Ch. 12)
Binary trees are an efficient way of storing data so that searches 
can be O(lgn). 
 

Used when we need a data structure that supports dynamic set 
operations, e.g., for tree S and key x (searching is primary 
purpose of BST) 
o  INSERT(S, x) 
o  Search(S, k)   
o  MINIMUM(S), MAXIMUM(S)         
o  SUCCESSOR(S, x), PREDESSOR(S, x)  
o  Preorder, Inorder, and Postorder traversal allow us to 

evaluate expressions, sort data 

Binary Search Trees 
Requirements for Binary Search Tree (BST): 
1.  Must be a binary tree. 
2.  All keys must be unique (key values are like individual ID numbers). 
3.  Each node in tree is the root of a BST such that: 

•  All nodes to left of root will have keys < root.key, and  
•  all nodes to right will have keys > root.key. 

 
Main advantage of BST is rapid search and low memory use; memory 
use is dependent only on size of data set. 
 

Time of search = O(depth of BST) = maximum number of nodes on root 
to leaf path.   

Binary Search Trees 
Every binary tree node (internal or leaf) contains a key.  These keys are 
unique. 
 

Binary Search Tree Property:  For every node x in tree,  
o  y.key < x.key for every y in x.left (left subtree of x) 
o  y.key > x.key for every y in x.right (right subtree of x) 
 

BST has stronger requirements than heaps do. 
 

 

 

These dynamic set operations are supported on BST S and key x 
o  INSERT(S, x), DELETE(S, x)   
o  SEARCH(S, x), MINIMUM(S), MAXIMUM(S)         
o  SUCCESSOR(S, x), PREDESSOR(S, x)  
o  InorderTraversal( S, x ) (to list or print sorted set) 

 

Binary Search Trees
Binary search trees, like heaps, can do most operations quickly  
because the operations depend on the height (depth) of the tree.   
 
Unlike heaps, binary search trees keep all the data in semi-sorted order  
such that the cost to print all the data in sorted order is linear in the  
number of items in the tree.  For heapsort, this cost is Θ(nlgn). 
 
We would like all the dynamic set functions mentioned on the last  
slide to be O(lgn).  However, this good running time depends on the  
bst implementation.  

Binary Search Trees 
A BST can be implemented as either a hierarchical list or as a sequential 
array. 
 

The hierarchical list representation is better in terms of storage required,  
because only the amount of storage needed is used. Most algorithms are 

written for a hierarchical tree with fields for key, right, and left subtrees 
(and a parent pointer if needed). 
 

The sequential array implementation has better performance when the 
BST is complete...otherwise there are holes in the array = wasted memory. 

 
      left subtree of A[i] = A[2i]      right subtree A[i] = A[2i + 1]  
 
                       parent of A[i] is at A[floor of i/2] 
 

 

Structure of bst nodes 
 

Each bst node contains fields left, right, and key.  Each bst  
node is the root of a binary search tree. Assume all keys are unique 
and all leaves are NIL (singly-linked bst) 
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Structure of bst nodes 
 

A doubly-linked bst node contains fields left, right, parent and 
key.  Each bst node is the root of a binary search tree.  
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Binary Search Trees

The BST's total ordering does the heap's partial ordering one 
better; not only is there a relationship between a BST node and 
its children, but there is also a relationship between the 
children, i.e. the value of a node's left child is always less than 
the value of its right child.  
 
Every node in the left subtree of node x has a key < x's key and 
every node in the right subtree of node x has a key > x's key. 

BST Insert
Insert(T, z) 
  1.   y = NIL         
  2.   x =  T.root 
  3.   while x ≠ NIL 
  4.        y =  x 
  5.            if z.key < x.key 
  6.                x = x.left 
  7.        else  
  8.                    x = x.right  
  9.   z.parent ==  y        // x = NIL & parent of z is set to y 
10.       if  y == NIL            // z is first node in T, which was previously empty 
11.        T.root =  z 
12.       else if z.key < y.key 
13.        y.left =  z          // z is added to tree as a leaf, the left child of y 
14.       else  
15.           y.right = z         // z is added to tree as a leaf, the right child of y 

Input is a BST T and a node z such 
that z.left = z.right = z.parent = NIL

All leaves in T are NIL

Every node is inserted as a leaf

BST Search

Recursive-Tree-Search(x, k)
1.  if (x == NIL) or (k == x.key)    \\   base cases
2.      return x
3.  if (k < x.key)  \\ recursive case 1: search left
4.      return Recursive-Tree-Search (x.left, k)
5.  else                \\ recursive case 2: search right
6.      return Recursive-Tree-Search (x.right, k)

Iterative-Tree-Search(x, k) 
1.  while (x != NIL) and (k != x.key) 
2.       if  k < x.key  
3.           x = x.left 
4.       else  
5.           x = x.right 
6.  return x 

The iterative version 
is more efficient, in 
terms of space used, 
on most computers 
(no entries on 
function call stack).

Both have 
running times of 
O(h), where h is 
the height of the 
tree.

BST Min & Max
The minimum element in a BST can always be found by 
following left child pointers to a leaf (until a NIL left child 
pointer is encountered).  Likewise, the maximum element 
can be found by following right child pointers to a leaf. 
 

Tree-Minimum(x) 
    while x.left ≠ NIL 
          x = x.left 
    return x 

Both have running times of O(h), where h is the height of 
the tree. 

Tree-Maximum(x) 
    while x.right ≠ NIL 
          x = x.right 
    return x 

BST Inorder Successor

Tree-Successor(x)
1.    if x.right !=  NIL
2.        return  Tree-Minimum(x.right)
3.   temp = x.parent
4.   while temp !=  NIL and x == temp.right
5.         x  = temp
6.         temp =  temp.parent
7.   return temp

In a BST, the Inorder Successor of x can also be defined as the node with the 
smallest key greater than the key x.  This algorithm is used when deleting a 
node from a BST.

1.  If x has a right child, then x.successor is the smallest node in the 
subtree rooted at x.right.

2.  If x has no right child, then x.successor is the nearest ancestor of x 
whose left child is either an ancestor of x or x itself.
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Tree-Successor(x)
1.    if x.right !=  NIL
2.        return  Tree-Minimum(x.right)

BST Inorder Successor 
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Case where x.right is not  
equal to NIL  

Tree-Successor(x)
1.    if x.right !=  NIL
2.        return  Tree-Minimum(x.right)
3.   temp = x.parent
4.   while temp !=  NIL and x == temp.right
5.         x  = temp
6.         temp =  temp.parent
7.   return temp
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Cases where x.right = NIL  

Tree-Predecessor(x) 
1.    if x.left !=  NIL then            
2.        then return  Tree-Maximum(x.left) 
3.   temp = x.parent 
4.   while temp !=  NIL and x = temp.left   
5.         x  = temp 
6.         temp =  temp.parent 
7.   return temp 

BST Inorder Predecessor

o  If x has a leftchild, then x.predecessor is the largest node in the 
subtree rooted at x.left. 

o  If x has no leftchild, then x.predecessor is the nearest ancestor of 
x whose right child is either an ancestor of x, or x itself 
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Cases where x.left = NIL  

Tree-Predecessor(x) 
1.    if x.left !=  NIL then            
2.        then return  Tree-Maximum(x.left) 
3.   temp = x.parent 
4.   while temp !=  NIL and x = temp.left   
5.         x  = temp 
6.         temp =  temp.parent 
7.   return temp 

BST Delete
Delete(T, z) 
  1.    if z.left == NIL or z.right == NIL  
  2.         y = z 
  3.    else  
  4.         y = Tree-Successor(z) 
  5.    if y.left !=  NIL  
  6.     x =  y.left 
  7.    else  
  8.         x =  y.right 
  9.     if x != NIL  
10.      x.parent = y.parent 
11.     if  y.parent == NIL  
12.          T.root =  x 
13.     else if y == y.parent.left  
14.          y.parent.left = x 
15.     else          
16.          y.parent.right = x 
17.     if y ≠ z  
18.      swap key[z] and key[y] 
19.     return y 

Input:  BST T and node z to be
deleted.  Three cases:���

1)    z  has no children.  Just remove it.���

2)   z  has only one child.  Splice out z,���
by letting z’s child replace z.

BST Delete
Delete(T, z) 
  1.    if z.left == NIL or z.right == NIL  
  2.         y = z 
  3.    else  
  4.         y = Tree-Successor(z) 
  5.    if y.left !=  NIL  
  6.     x =  y.left 
  7.    else  
  8.         x =  y.right 
  9.     if x != NIL  
10.      x.parent = y.parent 
11.     if  y.parent == NIL  
12.          T.root =  x 
13.     else if y == y.parent.left  
14.          y.parent.left = x 
15.     else          
16.          y.parent.right = x 
17.     if y ≠ z  
18.      swap key[z] and key[y] 
19.     return y 

3)   z has two children.  Find z’s 
successor y, which has at most one
child.

Since y is z's successor, then y can
have no left child, but it may have 
a right child.

If y is z's right child, then replace z
by y, leaving y's right child as is. 

If y is in z's right subtree, but is not
z's right child, first replace y by its
own right child and replace z by y.
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Postorder Traversal
Postorder traversal is a recursive algorithm used to produce 
a postfix expression from an expression tree. All leaf nodes 
have NIL left and right children.

Postorder-Tree-Walk(x)  /** start at root x **/
1.  if x != NIL
2.     Postorder-Tree-Walk(x.left)
3.     Postorder-Tree-Walk(x.right)
4.     visit the root

Running time = Θ(n) (each node must be visited 
at least once)

Preorder Traversal
Preorder traversal is a recursive algorithm that is used to get 
a prefix expression from an expression tree.  All leaf nodes 
have NIL left and right children.

Preorder-Tree-Walk(x)  /** start at root x **/
1.  if x != NIL
2.     visit the root
3.     Preorder-Tree-Walk(x.left)
4.     Preorder-Tree-Walk(x.right)

Running time = Θ(n) (each node must be visited 
at least once)

Inorder Traversal

Inorder-Tree-Walk(x)  /** start at root x **/
1.  if x != NIL
2.      Inorder-Tree-Walk(x.left)
3.      visit the root
4.      Inorder-Tree-Walk(x.right)

In a BST, inorder-Tree-Walk(root) visits the keys 
in ascending order.

Running time = Θ(n) (each node must be visited 
at least once)

Expression Trees
A binary expression tree is 
a specific kind of a binary 
tree used to represent 
arithmetic expressions.   
An inorder traversal yields 
an infix arithmetic 
expression.

Minimizing Running Time
Problem:  worst case for binary search tree height is Θ(n) - no better 

than a linked list. 
 
Solution:  Guarantee tree has small height by making sure it is balanced 

so that h = Ο(lgn). 
 
Method:  restructure the tree if necessary.  No extra work for searching, 
but requires extra work when inserting or deleting. 
 

Red-black, AVL and 2-3 trees: special cases of binary trees that avoid the 
worst-case behavior by ensuring that the tree is nearly balanced at all 
times. 


