
Plan for 241 day 1: Design and Analysis of Algorithms

Read chapters 1 through 4. Lectures will start by covering
asymptotic analysis (Ch. 3) and analysis of recursive algo-
rithms (Ch. 4). Chapter 2, sections 2.1 and 2.2 give examples of
how to analyze an iterative algorithm. Section 2.3 gives exam-
ple of how to analyze recursive algorithms. Both algorithms
in chapter 2 are solutions for the sorting problem.

Start by reading syllabus, a handout. Ask: who already knows LATEX?

Roll call, find out who is/isn’t enrolled.

Introduce terms: Algorithm, Algorithmic problem, Algorithm instance.

a) algorithm: computational procedure that transforms valid input(s)
into valid output. The algorithms we study will also terminate and
be provably correct. Most will be deterministic.

b) algorithmic problem: the set of all possible input instances and their
corresponding outputs.

c) algorithm instance: one possible input to the algorithm.
Introduce sorting problem as an example (more later).

Given a problem, P, there may be many different solutions: A1 A2. . .Ak
These algorithmic solutions may differ in efficiency and we want to find
most efficient.

Measures of algorithm efficiency:

a) Efficiency of algorithms usually expressed only in terms of TIME
taken on input size n, as n increases to infinity.

1



b) Another measure of efficiency is SPACE: the amount of extra mem-
ory taken beyond what is needed to store input (n).

Coding generally starts with a solution of the problem in pseudocode.
Mention the biggest difference between pseudocode we normally write
and the textbook’s pseudocode: The book uses 1-based array indices.
There are no braces or end statements, just indentation. Many of the
steps are stated in English.

For this week, concentrate on chapters 3 and 4: Asymptotic analysis and
Recurrence relations.

Observation 1: An algorithm that does anything with its input takes longer
on larger input sizes.

Observation 2: An algorithm without iteration or recursion has running
time that is not dependent on the size of the input.

Simplifications that make algorithms comparable:

• Notation: Asymptotic Analysis requires use of special terminology
to classify the order of growth of time (or space) taken to run a
particular algorithm as the data size n increases without bound.

• Computational model: A single-processor RAM machine that pro-
cesses lines of the algorithm sequentially.

Observation 3: We are rarely interested in the running time of an algorithm
on small inputs. Asymptotic Analysis allows us to ignore constant multiples
and lower order terms in mathematical expressions.

2



Big Oh: f(n) = O(g(n)) if there exist constants c > 0 and n0 ≥ 1 for
which f(n) ≤ c(g(n)) for some c > 0 and all n ≥ n0.

If f(n) ≤ cg(n) ∀ n ≥ n0 where c > 0 and n0 ≥ 1, then f(n) = O(g(n)).

Ex: 2n2 = O(n3) with c = 1 and n0 ≥ 2.

Observations:
n2 = O(n2), n2+n = O(n2), n2+1000n = O(n2), n2 = O(n3), n2 =
O(n4)

Show n2 + n ≤ c(n2). Choose c = 2 and n0 = 2, then we have
4 + 2 ≤ 2 ∗ 4 and 6 ≤ 8, so correct. This holds for c = 2 and all
n ≥ 2.

Ex: f(n) = 5n + 4 and g(n) = n. To show f(n) = O(g(n)),
let c = 6 and n0 ≥ 4. Then c(g(n)) = c ∗ n0 = 6 ∗ 4 = 24 and
f(n) = 5 ∗ 4 + 4 = 24. So f(n) ≤ cg(n). This holds for c = 6
and all n ≥ 4.

Observations:
n = O(n), n = O(n2), n = O(n3), n = O(2n), n = O(n!)

Big Omega: f(n) = Ω(g(n)) if there exists a constant c > 0 and a value
of n0 ≥ 1 for which f(n) ≥ c(g(n)) for some c and all n ≥ n0.

If f(n) ≥ cg(n) ∀ n ≥ n0 where c > 0 and n0 ≥ 1, then f(n) = Ω(g(n)).

Ex: f(n) = 5n + 4 and g(n) = n. To show f(n) = Ω(g(n)), let
c = 5 and n0 ≥ 1. 5n+ 4 ≥ cn is true for c = 5 and n0 ≥ 1. We
have 5 ∗ 1 + 4 = 9 and 5 ∗ 1 = 5 and 9 ≥ 5. This holds for c = 5

3



and all n ≥ 1.

Observations:
n = Ω(n), n = Ω(lgn), n = Ω(lglgn), n = Ω(

√
n), n = Ω(n0.9999)

Ex: n(1/2) = Ω(lgn), with c = 1 and n0 ≥ 16.

Observations:
n2 = Ω(n1.999), n3 = Ω(n2), n2 = Ω(lgn), n2 = Ω(lglgn)

Show n2 − n ≥ c(n2). Choose c = 1
2 and n0 ≥ 2; then we have

4− 2 ≥ 1/2 ∗ 4 = 2 ≥ 2.

Choose c = 1
4 and n0 ≥ 4; then we have 16 − 4 ≥ 1/4 ∗ 16 =

12 ≥ 4.

Big Θ: f(n) = Θ(g(n)) if there exist constants c1, c2 > 0 such that
∀ n ≥ n0 we have 0 < c1(g(n)) ≤ f(n) ≤ c2(g(n)).

f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n)).

Ex: n2/2− 2n = Θ(n2), with c1 = 1/4, c2 = 1/2 ∀ n0 ≥ 8.
(this is given on page 37 of CLRS IM)
(82/2− 2 ∗ 8) ≥ 1/4(82) ? (64/2− 16) = (32− 16) = 16 ≥ 16.

(82/2− 2 ∗ 8) ≤ 1/2(82) ? 16 ≤ 32. True for all n0 ≥ 8. There-
fore, n2/2− 2n = Θ(n2).

Try with n0 = 10:
c1 = 1/4, c2 = 1/2 and n0 ≥ 10
(102/2−20) ≥ 1/4(102) ? (50−20) = 30 ≥ 1/4(100) or 30 > 25.

4



(50− 20) ≤ 1/2(102) ? 30 < 50.

little oh (strict upper bound) and little omega (strict lower bound).

Using limits to show asymptotic relationship of functions1:

f(n) = o(g(n)) iff

lim
x→∞

f(n)

g(n)
= 0

f(n) = Θ(g(n)) iff

lim
x→∞

f(n)

g(n)
= c

f(n) = ω(g(n)) iff

lim
x→∞

f(n)

g(n)
=∞

Asymptotic Notation: Big Oh, Big Omega, and Big Theta notation.

• (O(f(n))) is a worst case, or upper, bound;
(“in any case, the time will not exceed f(n)”).

• Ω(f(n)) is a best case, or lower, bound;
(“in any case, you cannot get a lower running time than f(n)”).

• Θ(f(n)) is usually given when both upper and lower bounds are the
same—a tight bound

Observation 4: An algorithm without iteration or recursion has running
time that is not dependent on the input size, so running time is O(1) – con-
stant time. So we concentrate on iterative and recursive algorithms.

* NEXT TOPIC: COMPARING TIME COMPLEXITY OF ALGORITHMS

1c is a constant greater than 0.

5


