Plan for 241 day 1: Design and Analysis of Algorithms

READ CHAPTERS 1 THROUGH 4. LECTURES WILL START BY COVERING
ASYMPTOTIC ANALYSIS (CH. 3) AND ANALYSIS OF RECURSIVE ALGO-
RITHMS (CH. 4). CHAPTER 2, SECTIONS 2.1 AND 2.2 GIVE EXAMPLES OF
HOW TO ANALYZE AN ITERATIVE ALGORITHM. SECTION 2.3 GIVES EXAM-
PLE OF HOW TO ANALYZE RECURSIVE ALGORITHMS. BOTH ALGORITHMS
IN CHAPTER 2 ARE SOLUTIONS FOR THE SORTING PROBLEM.

__ Start by reading syllabus, a handout. Ask: who already knows ETEX?
___ Roll call, find out who is/isn’t enrolled.

_ Introduce terms: Algorithm, Algorithmic problem, Algorithm instance.

a) algorithm: computational procedure that transforms valid input(s)
into valid output. The algorithms we study will also terminate and
be provably correct. Most will be deterministic.

b) algorithmic problem: the set of all possible input instances and their
corresponding outputs.

c¢) algorithm instance: one possible input to the algorithm.
Introduce sorting problem as an example (more later).

_ Given a problem, P, there may be many different solutions: A1l A2...Ak
These algorithmic solutions may differ in efficiency and we want to find
most efficient.

_ Measures of algorithm efficiency:

a) Efficiency of algorithms usually expressed only in terms of TIME
taken on input size n, as n increases to infinity.



b) Another measure of efficiency is SPACE: the amount of extra mem-
ory taken beyond what is needed to store input (n).

_ Coding generally starts with a solution of the problem in pseudocode.
Mention the biggest difference between pseudocode we normally write
and the textbook’s pseudocode: The book uses 1-based array indices.
There are no braces or end statements, just indentation. Many of the
steps are stated in English.

For this week, concentrate on chapters 3 and 4: Asymptotic analysis and

Recurrence relations.

Observation 1: An algorithm that does anything with its input takes longer
on larger input sizes.

Observation 2: An algorithm without iteration or recursion has running
time that is not dependent on the size of the input.

_ Simplifications that make algorithms comparable:

e Notation: Asymptotic Analysis requires use of special terminology
to classify the order of growth of time (or space) taken to run a
particular algorithm as the data size n increases without bound.

e Computational model: A single-processor RAM machine that pro-
cesses lines of the algorithm sequentially.

Observation 3: We are rarely interested in the running time of an algorithm
on small inputs. Asymptotic Analysis allows us to ignore constant multiples
and lower order terms in mathematical expressions.



__ Big Oh: f(n) = O(g(n)) if there exist constants ¢ > 0 and ny > 1 for
which f(n) < ¢(g(n)) for some ¢ > 0 and all n > ny.

If f(n) <cg(n) ¥V n>ngwherec > 0andng > 1, then f(n) = O(g(n)).

Ex: 2n? = O(n?) with ¢ = 1 and ng > 2.

Observations:
n? = O(n?),n*+n = O(n?),n*+1000n = O(n?),n* = O(n3),n? =
O(n?)

Show n? +n < ¢(n?). Choose ¢ = 2 and ng = 2, then we have
442 <2x4 and 6 <8, so correct. This holds for ¢ = 2 and all
n > 2.

Ex: f(n) = 5n+ 4 and g(n) = n. To show f(n) = O(g(n)),
let ¢ = 6 and ng > 4. Then ¢(g(n)) = cxny =64 = 24 and
f(n)=5x4+4=24. So f(n) < cg(n). This holds for ¢ = 6
and all n > 4.

Observations:

n=0(n),n=0(n?),n=0(mn),n=0(2"),n=0(n!)

_ Big Omega: f(n) = Q(g(n)) if there exists a constant ¢ > 0 and a value
of ng > 1 for which f(n) > ¢(g(n)) for some ¢ and all n > ny.

If f(n) > cg(n) V n>mngwhere c > 0andng > 1, then f(n) =Q(g(n)).

Ex: f(n) =5n+4 and g(n) = n. To show f(n) = Q(g(n)), let
c=bandny>1. dn+4 > cnistrue forc=>5and nyg > 1. We
have 5x1+4 =9 and 5x1 =25 and 9 > 5. This holds for ¢ =5



and all n > 1.

Observations:
n=Qn),n=Q(Ign),n=Qglgn),n = Q(v/n),n = Qn"99)

Ex: /2 = Q(lgn), with ¢ = 1 and ny > 16.

Observations:
n? = Q(n99) n3 = Q(n?),n* = Q(lgn),n* = Q(lglgn)

Show n? — n > ¢(n?). Choose ¢ = 4 and ny > 2; then we have
4-2>1/2%4=2>2

Choose ¢ = % and ng > 4; then we have 16 —4 > 1/4 % 16 =
12 > 4.

__Big ©: f(n) = O(g(n)) if there exist constants cl,¢2 > 0 such that
V' n > ng we have 0 < cl(g(n)) < f(n) < c2(g(n)).

f(n) = ©(g(n)) iff f(n) = O(g(n)) and f(n) = Q(g(n)).

Ex: n?/2 —2n=0(n?), with c1 =1/4,c2=1/2 V ng > 8.
(this is given on page 37 of CLRS IM)
(82/2 — 2% 8) > 1/4(82) ? (64/2 — 16) = (32 — 16) = 16 > 16.

(82/2 —2%8) < 1/2(8%) ? 16 < 32. True for all ny > 8. There-
fore, n?/2 — 2n = O(n?).

Try with ng = 10:
cl=1/4, c2=1/2 and ny > 10
(102/2—20) > 1/4(10%) ? (50—20) = 30 > 1/4(100) or 30 > 25.



(50 — 20) < 1/2(102) ? 30 < 50.

___little oh (strict upper bound) and little omega (strict lower bound).

Using limits to show asymptotic relationship of functions!:

f(n) = o(g(n)) iff

im M =0
00 g(’fL
f(n) =0O(g(n)) iff
lim M =c
00 g n)
f(n) =w(g(n)) iff
lim M = 00
7% g(n

___Asymptotic Notation: Big Oh, Big Omega, and Big Theta notation.
e (O(f(n))) is a worst case, or upper, bound;
(“in any case, the time will not exceed f(n)”).

e Q(f(n)) is a best case, or lower, bound;
(“in any case, you cannot get a lower running time than f(n)”).

e O(f(n)) is usually given when both upper and lower bounds are the
same—a tight bound

Observation 4: An algorithm without iteration or recursion has running
time that is not dependent on the input size, so running time is O(1) — con-
stant time. So we concentrate on iterative and recursive algorithms.

*NEXT TOPIC: COMPARING TIME COMPLEXITY OF ALGORITHMS

¢ is a constant greater than 0.



