Plan for 241 day 2: Comparing time complexity of algorithms

From Chapter 3, standard notation and common functions:

e When the base of a log is not mentioned, it is assumed to be base 2.

e Analogy between comparisons of functions f(n) and g(n) and compar-
isons of real numbers a and b:

f(n)=0(g(n)) islike a<b
f(n)=Q(g(n)) islike a>b
f(n) =06(g(n)) islike a=10
f(n) =o0(g(n)) islike a<b
f(n) =w(g(n)) islike a>1b

e A polynomial of degree d is ©(n?).

e For all real constants a and b such that a > 1,6 > 0,

nb

lim — =0
Tr—00 an

so n® = o(a"). Any exponential function with a base > 1 grows faster

than any polynomial function.

e Notation used for common logarithms:
lgn = logan (binary logarithm)
Inn = log.n (natural logarithm)

e More logarithmic facts:
For all real a > 0,6 > 0,¢c > 0, and n,

a = b(lOgba) // EX: 2([971) — n(ng) =n

1

logra™ = nlogya
logyr =y iff x =Y
logra = (logea)/(log.b) // the base of the log doesn’t matter asymptoti-

cally
a(logbc) — C(logba)

lg’n = o(n®) // any polynomial grows faster than any polylogarithm
n! = o(n") // factorial grows slower than n"
n! =w(2") // factorial grows faster than exponential with base > 2

lg(n!) = O(nlgn) // Stirling’s rule

Iterated logarithm function:

lg*n (log star of n)

1g"n is the log function applied i times in succession.
lg*n = min(i > 0 such that [gtn < 1)

*

lg*x

(00, 1] 0
(1,2] 1
(2,4] 2
(4, 16] 3
(16,65536] 4
(65536, 20553] 5

lg’2 =1
lg'd =2
lg16 =3
[g*65536 = 4

Very slow-growing function.

COMPARING TIME COMPLEXITY OF FUNCTIONS:
Given 2 functions, which one grows faster (i.e. which one grows faster)?

Tech 1: Factor sides by common terms
n? and n3 // divide both sides by n* to get 1 and n
clearly n grows faster than 1, so n*> = O(n?)

Tech 2: Take log of both sides, then substitute very large values for n

2" and n?
[g2" =nlg2 =n(l) =n
lgn® = 2lgn

substitute 2!% for n in checking n and 2lgn,
we have 2100 > 2 x [g21%0 = 200

So 2" = Q(n?)

Exponentials dominate polynomials.

Tech 3: Take the limit as n goes to oc.

