Plan for 241 day 3:DETERMINING THE RUNNING TIME OF ITERATIVE
ALGORITHMS USING SUMMATIONS.

We need a way to determine the time taken (3 methods):

a) Experimental method: code the algorithm and time the execution on
a given computer platform. This solution suffers from the fact that
processors may be under different loads and that one processor might
be slower than another (too machine dependent).

b) Count the time taken by every line of execution and sum the running
time for each on data size n, assuming all simple operations take constant
time (yields messy and lengthy polynomial expressions).

c¢) Identify the operation(s) that are executed most often (basic or dominant
operation). In an iterative algorithm, this is generally the operation(s)
executed in the innermost loop of nested loops. Much easier to deter-
mine the count of one line than it is for entire algorithm. Assume each
line takes a constant amount of time.

ITERATIVE ALGORITHMS:

Process for determining running time of iterative algorithms:

1. Decide on a parameter indicating input size.
2. Identify the algorithm’s basic operation.

3. Set up a sum expressing the number of times the basic operation is
executed in the worst case.

If number of times basic operation is executed depends on something
other than data size n, give a sum for the best-case number of times too.

4. Find a function or functions describing the sum of operations.

5. Express function(s) found in step 4 asymptotically (using O or Theta).




MaxElement (A[1..n])
Input: A is an array of real numbers and x is a number.
OQutput: The largest element in A

cost times
maxval = A[O] cl 1
for i = 2 ton c2 n
if A[i] > maxval c3 n-1
maxval = A[i] cd n-1
return maxval ch 1

Ask: What is basic operation?
Different running times on different input instances?
Are there b-c and w-c running times? If so, give instances of each.
What is running time in asymptotic notation?

MatrixMultiplication(A[1..n],B[1..n])
Input: 2 n-by-n matrices
Output: Matrix C = AB

for i =1 ton
for j=1ton
Cli,j] = 0.0
for k =1 ton
Clil[j] = C[i,j] + A[i,k] =* B[k,j]
return C

Ask: What is basic operation?
Different running times on different input instances?
Are there b-c and w-c running times? If so, give instances of each.
What is running time in asymptotic notation?




UniqueElements(A[1..n])
Input: A is an array [1l..n] of comparable items
Output: true if all elts are distinct and false o.w.

cost times
for i =1 ton cl 7
for j = i+l to n c2 7
if A[i] = A[j] c3 77
return false cd 7

return true ch 1

Ask: What is basic operation?
Different running times on different input instances?
Are there b-c and w-c running times? If so, give instances of each.
What is running time in asymptotic notation?

LinearSearch(x, A):
Input: A is an array of whole numbers and x is a number.
Purpose: Return index of number x in array A or -1 if x does not
appear in A.

cost times

i=1 cl 1
while (i <= A.length) c2 77
if (A[i] == x) c3 7
return i cid ??

return -1 ch 1

Does this algorithm have same running time for all valid inputs? No

Ask: What is basic operation?
Different running times on different input instances?
Are there b-c and w-c¢ running times? If so, give instances of each.
What is running time in asymptotic notation?

Omega(1l) is best case.



0(n) is worst case.
Theta(n/2) is average case.

Algorithm for sorting problem:

InsertionSort (A):

Input: A is an array of whole numbers <al a2 a3 ... an>.
Output: Permutation of input array <al’ a2’ a3’ ... an’> such that
al’ <= a2’ <= a3’ <= ... <= an’
cost times
for j =2 ton cl n
key = A[j] c2 n-1
i=j-1 c3 n-1
while (i > O and A[i] > key) c4 ti
Ali+1] = A[i] ch ti -1 77
i=1i-1 c6 ti -1 77
A[li+1] = key c7 n-1

Does this algorithm have same running time for all valid inputs? No

Ask: What is basic operation? Different running times on different input
instances? Are there b-c and w-c running times? If so, give instances.
What is running time in asymptotic notation?

(2(n) is best case. What does the data set look like for this running
time?
O(n?) is worst case. What does the data set look like for this running
time?

O(%) is average case.

Notes:
- Every start of a for loop is checked one more time than any operation

4



inside the loop.

- The basic operation is the while loop, executed
n n

Y j=24+34+..4+n=> j—1in the worst case.
j=2 j=1

FACTs ABOUT SUMMATIONS:
sum (lower to upper) 1 = upper - lower + 1

sum(i=1 to n-1) sum(j=0 to i-1)1, where sum(j=0 to i-1)1 = i-1 -0+ 1 =i =
sum(i=1 to n-1)i = (n-1)n/2

sum (i=1 to n) i = n(n+1)/2, so sum (i=1 to n-1) i = (n-1)n/2.

NEXT SUBJECT: Divide-and-conquer algorithms (Chapter 4)

Binary Search
Merge-Sort (ch. 1)



