
2/25/19

1

Hash Tables (Ch. 11)
Many applications require a dynamic set that supports only Insert,
Delete, and Search. E.g., a dictionary ADT.
A hash table is, usually, an array. It tries to get the benefit of array’s
direct addressing when we may have more than one key per address.

Definition:
•  U is the "key space", the set of all possible keys
•  K ⊆ U is the set of keys seen

Goals:
•  fast implementation of all operations -- O(1) time
•  space efficient data structure -- O(n) space if n elements in dictionary

Approach 1: Linked Lists
Linked List Implementation
 - Insert(x) : add x at head of list
 - Search(k) : start at head and scan list
 - Delete(x) : start at head, scan list, and then delete if found

Running Times: (assume n elements in list)
 - Insert(x) : O(1) time
 - Search(k) : worst-case -- element at end of list: n operations
 average-case -- element at middle of list: n/2 ops
 best-case -- element at head of list: 1 op
 - Delete(x) : same as searching
We'd like O(1) time for all operations, we have O(n) for two.
Space Usage: O(n) space -- very space efficient, only uses
what is needed to store the data at any time.

Approach 2: Direct-Addressing
Direct-Address Table Assume U = {0, 1, 2, ..., m}.
The data structure is an ARRAY T[0...m]
 - Insert(x) : T[key[x]] := x
 - Search(k) : return T[k]
 - Delete(x) : T[key[x]] := NIL

Running Times: (assume n elements in list)
 - Insert(x) : O(1) time
 - Search(k) : O(1) time
 - Delete(x) : O(1) time
Great running time!
Space Usage: (assume n elements to be stored in list).
-  O(m) space always!
-  bad if n << m

Approach 3: Hashing
Hashing
 - hash table (an array) H[0..m], where m << |U|

- amount of storage closer to what is really needed
 - hash function h is a mapping of keys to indices in H
 - h : U → {0, 1, ..., m}

Problem: there will be some collisions; that is, h will map some keys to
the same position in H (i.e., h(k1) = h(k2) for k1 ≠ k2).

Different methods of resolving collisions:
1. chaining: put all elements that hash to same location in a linked list at

that location.
2.  open addressing: each time there is a collision, a probe number

(initially 1) is incremented. There are various types of probe
sequences:
-  linear probing
-  quadratic probing
-  double hashing

Hash Functions
•  The mapping of keys to indices of a hash table is called a

 hash function

•  A hash function is usually the composition of two functions,
 a hash code map and a compression map.

– An essential requirement of the hash function is to map equal keys
to equal indices
– A “good” hash function minimizes the probability of collisions

Purpose of hash function is to translate an extremely large
key space into a reasonably small range of integers, i.e., to
map each key k to a position in the hash table.

Choosing Hash Functions
Ideally, a hash function satisfies the Simple Uniform Hashing
Assumption. Unfortunately, we cannot usually achieve this...so
we use heuristics.

Assumption: Simple Uniform Hashing
 - Any key is equally likely to hash to any location
 (index, slot) in hash table

2/25/19

2

Hash-Code Maps

1) Component sum: for numeric types with more than 32 bits, we can add

the 32-bit components, i.e., sum the high-order bits with the low-order bits.

Integer result is the hash code.

A hash function assigns each key k in our dictionary an integer
value, called the hash code or hash value. This integer does
not necessarily have to be in the range [0, m-1] and it can be
negative.

An essential feature of a hash code is consistency, i.e., it should
map all items with key k to the same integer.

Common hash code maps:

Hash-Code Maps

2) Polynomial accumulation: for strings of a natural language, combine
the character values (ASCII or Unicode) a0a1 ... an-1 by viewing them as
the coefficients of a polynomial:
 a0 + a1x + a2x2 ...+ an-1xn-1

 -The polynomial is computed with Horner’s rule at a fixed value x (a non-

zero constant):

 a0 + x (a1 + x (a2 + ... x (an-2+ x an-1) ...))

 -The choice x = 33, 37, 39, or 41 gives at most 6 collisions on a

vocabulary of 50,000 English words

Common hash code maps (cont.):

Compression Maps

 Division method: h(k) = k mod m
–  the table size m is usually chosen as a prime number to

help “spread out” the distribution of hashed values

Normally, the range of possible hash codes generated for a set of keys
will exceed the range of the array.

So we need a way to map this integer into the range [0, m-1].

0 1 2 3 4 5 6 7 8 9 10

For example, each pair of keys 5 and 16, 22 and 11, 2 and 13 would
hash to the same index if m = 11.

2 522
161311

Collision Resolution by Chaining
Chaining: Use array of linked lists. Put all keys that hash to the

same location in a linked list (insert keys at head of list).

0 1 ... mH:

x

y

i ...

h(x) = h(y) = i

Insert(x) : O(1) time

Search(x): O(n) time (w-c)

Delete(x): O(n) time (w-c) NOTE: The idea of hashing is to get the
average-case behavior down to θ(1) for
all operations

m-1m-2

Collision Resolution by Open Addressing
In this method, the hash function includes the probe number (i.e.,
how many attempts have been made to find a slot for this key) as
an argument.

- the probe sequence for key k = h(k,0), h(k,1),..., h(k,m-1)

- In the worst case, every slot in table will be examined, so stop
 looking either when the item with key k is found (if searching) or  

 an empty slot is found (if inserting)

Modifying the placement using the probe value is known as rehashing.

Linear Probing (Open Addressing)
Linear Probing: Simplest rehashing functions (e.g., add 1 for each probe)
the ith probe (where i is initially 0) h(k, i) is

h(k, i) = (h'(k) + i) mod m

•  h'(k) is ordinary hashing function, tells where to start the search.
•  search sequentially through table (with wrap around) from starting point. 

How many distinct probe sequences are there? m
•  each starting point gives a probe sequence
•  there are m starting points 

plus: easy to implement
minus: leads to clustering (long run of occupied slots in H), yields

bad performance if a key collides with an element in a cluster (also
known as primary clustering).

2/25/19

3

Linear Probing Example
•  h(k, i) = (h(k) + i) mod m (i is probe number, initially, i = 0) 

•  Insert keys: 18 41 22 44 59 32 31 73 (in that order)

1841 2244 59 32

44 3231

31

73

73
0 1 2 3 4 5 6 7 8 9 10 11 12

If a collision occurs, when j = h(k), we try next at A[(j+1)mod m], then
A[(j+2)mod m], and so on. When an empty position is found the item is
inserted.

Each time key is compared to number in the array, there is a collision.

How many collisions occur in this case?

h(k) = k mod 13
m = 13

11

Quadratic Probing (Open Addressing)
Quadratic Probing: the ith probe h(k,i) is

h(k, i) = (h'(k) + c1 ⋅ i + c2 ⋅ i2) mod m
•  c1 and c2 are constants
•  h'(k) is ordinary hash function, tells where to start the search
•  later probes are offset by an amount quadratic in i (the probe

number).

How many distinct probe sequences are there? m
•  each starting point gives a probe sequence
•  there are m starting points

plus: easy to implement
minus: leads to secondary clustering

Quadratic Probing
 Insert keys: 18 41 22 44 59 32 31 73 (in that order)

1841 22 445932

4431

3173
0 1 2 3 4 5 6 7 8 9 10 11 12

How many collisions occur in this case?73

44 % 13 = 5 (collision), next try: (5 + 2 ⋅ 1 + 3 ⋅ 12) % 13 = 10

h(k) = k mod 13
m = 13
c1 = 2, c2 = 3

31

31 % 13 = 5 (collision), next try: (5 + 2 ⋅ 1 + 3 ⋅ 12) % 13 = 10 % 13 = 10 (collision)
next try: (5 + 2 ⋅ 2 + 3 ⋅ 22) % 13 = 21 % 13 = 8

73 % 13 = 8 (collision), next try: (8 + 2 ⋅ 1+ 3 ⋅ 12) % 13 = 0

h(k,i) = (h(k) + c1 ⋅ i + c2 ⋅ i2) mod m

4

Double Hashing (Open Addressing)

Double Hashing: the ith probe h(k,i) is
h(k, i) = (h1(k) + h2(k) ⋅ i) mod m

•  h1(k) is ordinary hash function, tells where to start the search
•  h2(k) is ordinary hash function that gives offset for subsequent  

probes.
Note: h2(k) should be relatively prime to m.

How many distinct probe sequences are there?
•  there are m starting points
•  starting point and offset can vary independently

Double Hashing Example
•  h1(K) = K mod m
•  h2(K) = K mod (m – 1)
•  The ith probe is h(k, i) = (h1(k) + h2(k) ⋅ i) mod m
•  we want h2 to be an offset to add

 Insert keys: 18 41 22 44 59 32 31 73 (in that order)

1841 2244 59

44

32

31

3173
0 1 2 3 4 5 6 7 8 9 10 11 12

How many collisions occur in this case?

44 % 13 = 5 (collision), next try: (5 + (44 % 12)) % 13 = 13 % 13 = 0

31 % 13 = 5 (collision), next try: (5 + (31 % 12)) % 13 = 12 % 13 = 12

m = 13

2

Analyzing Open Addressing

If the load α < 1, then the expected number of probes in a successful
search is
 ≤ (1/ α)ln (1/(1-α))

Thus, for example, we have:
o  if the hash table is half full, (α = .5), then the expected number of

probes in a successful search is 2ln 2 < 1.386.
o  if the hash table is 90% full, (α = .9), then the average number of

probes in a successful search is 1.1 ln 10 < 2.558.

If α is a constant ≤ 1, a successful search runs in O(1) time.

α = n/m (load factor). We need α ≤ 1 (table cannot be overfilled).

