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More dynamic programming  
 

Dynamic programming solutions rely on the optimal
substructure property.  Usually the recursive solutions 
to these problems take exponential time with many 
redundant calculations because the subproblems are
not independent.

One more dynamic programming example from 
Chapter 15 that we will cover:

•  Matrix-Chain Product
 

Matrix-Chain Product 
If A is an m × n matrix and B is an n × p matrix, then  
 

               A ⋅ B = C   is an m × p matrix 
 

and the time needed to compute C is O(mnp). 
 

•   there are mp elements of C 
•   each element of C requires n scalar multiplications and n-1  
   scalar additions  

Matrix-Chain Multiplication Problem: 
 
Given matrices A1, A2, A3, ..., An, where the dimension of Ai is pi-1 ×  pi, 
determine the minimum number of multiplications needed to compute 
the product A1 ⋅ A2 ⋅ ... ⋅ An.  This involves finding the optimal way to 
parenthesize the matrices. 
 
For more than 2 matrices, there exists more than one order of multi-
plication. 

Matrix-Chain Product 
The running time of a brute-force solution (exhaustively checking all ways to 
parenthesize 2 matrices) is: 
 

 T(n) = 1 if n=1, 
 

        =                                      if n ≥ 2 
 
 
Here, P(k) is the way to parenthesize first k matrices and P(n – k) is the way 
to parenthesize the rest. 
 
Hopefully, we can do better using Dynamic Programming. 

P(k)P(n− k)
k=1

n−1

∑ =Ω(2n )

Matrix-Chain Product Example 
A1 (4 × 2) A2 (2 × 5) A3 (5 × 1)

× ×

(A1 ⋅ A2) ⋅ A3 
M1 = A1 ⋅ A2:  requires 4 ⋅ 2 ⋅ 5 = 40 multiplications, M1 is 4 × 5 matrix 
M2 = M1 ⋅ A3:  requires 4 ⋅ 5 ⋅ 1 = 20 multiplications, M2 is 4 × 1 matrix 
–> total multiplications = 40 + 20 = 60 

A1 ⋅ (A2 ⋅ A3 )  
M1 = A2 ⋅ A3:  requires 2 ⋅ 5 ⋅ 1 = 10 multiplications, M1 is 2 × 1 matrix 
M2 = A1 ⋅ M1:  requires 4 ⋅ 2 ⋅ 1 = 8  multiplications, M2 is 4 × 1 matrix 
–> total multiplications = 10 + 8 = 18 

Two ways to parenthesize this product: 

p = (4, 2, 5, 1) dimension array 

The order 
of mult can  
make a 
difference  
in # of steps 

How do we 
find the 
minimum 
over all  
possibilities? 

Matrix-Chain Product 
The optimal substructure of this problem can be given with the 
following argument: 
 

Suppose an optimal way to parenthesize Ai Ai+1…Aj splits the product 
between Ak and Ak+1.  Then the way the prefix subchain Ai Ai+1…Ak is 
parenthesized must be optimal.  Why?  
 
If there were a less costly way to parenthesize Ai Ai+1…Ak, substituting 
that solution as the way to parenthesize Ai Ai+1…Aj gives a solution with 
lower cost, contradicting the assumption that the way the original group 
of matrices was parenthesized was optimal.   
 
Therefore, the structure of the subproblem solutions must be optimal. 

Matrix-Chain Product – Recursive Solution 
RMP(p, i, j)           // p is array of dimensions, initially i = 1, j = # of matrices 
1. if i = j  return 0 // nothing need be done with a single matrix 

2. M[i,j] = ∞ 
3. for k = i to j-1 
4.      q = RMP(p, i, k) + RMP(p, k+1, j) + pi-1pkpj 
5.      if q < M[i,j] then M[i,j] = q 
6. return M[i,j]  
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Matrix-Chain-Order (p)  // p is array of dimensions 
  1. n = p.length – 1 
  2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables   
  3. for i = 1 to n 
  4.       M[i,i] = 0                     /** fill in main diagonal of M with 0s **/ 
  5. for d = 2 to n                     /** d is chain length**/                  
  6.       for i = 1 to n – d + 1  
  7.             j = i + d - 1            
  8.             M[ i, j ] = ∞ 
  9.             for k = i to j-1 
                        /** q is cost in scalar multiplications **/ 
10.                   q = M[ i, k]+ M[k+1,j] + pi-1pkpj) 
11.                    if q < M[ i, j ]  
12.                               M[ i, j ] = q 
13.                               s[ i, j ] = k   
14. return M and s 

Matrix-Chain Product – Bottom-up solution 
Matrix-Chain-Order (p)             /** p is array of dimensions **/ 
  1. n = p.length – 1 
  2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables   
  3. for i = 1 to n 
  4.       M[i,i] = 0                     /** fill in main diagonal with 0s **/ 
  5.  for d = 2 to n                    
  6.       for i = 1 to n – d + 1  
  7.             j = i + d - 1            
  8.             M[i,j] = ∞ 
  9.             for k = i to j-1 
10.                   q = M[i,k]+ M[k+1,j] + pi-1pkpj) 
11.                    if q < M[i,j]  
12.                               M[i,j] = q 
13.                               s[i,j] = k   
14. return M and s 

p = [30, 35, 15, 5, 10, 20, 25] 

Matrix-Chain Product – Bottom-up solution 

Matrix-Chain Product – Bottom-up solution 
Input:   s array, dimensions of M matrix 
Output: side-effect printing of optimal parenthesization 
 
Print-Optimal-Parens(s, i, j)  // initially, i = 1 and j = n 
  1. if i == j  
  2.      print “A”i 

  3. else 
  4.      print “(” 
  5.      Print-Optimal-Parens(s, i, s[i, j]) 
  6.      Print-Optimal-Parens(s, s[i, j] + 1, j) 
  7.      print “)” 

“((A1 (A2 A3))((A4 A5) A6))” 

Matrix-Chain Product – Bottom-Up Solution 

Complexity:   •  O(n3) time because of the nested for loops with 
                           each of  d, i, and k taking on at most n-1 values. 
 

           •  O(n2) space for two n x n matrices M and s 

Longest Common Subsequence Problem (§ 15.4) 

Problem:  Given X = < x1, x2, ..., xm > and Y = <y1, y2,..., yn), 
find a longest common subsequence (LCS) of X and Y. 

Example: 
 X = 〈 A, B, C, B, D, A, B 〉 
 Y = 〈 B, D, C, A, B, A 〉 
 LCSXY = 〈 B, C, B, A 〉 or LCSXY = 〈 B, D, A, B 〉) 

Brute-Force solution: 
1.  Enumerate all subsequences of X and check to see if they appear in the correct 

order in Y (chars in sequences are not necessarily consecutive). 
 

2.  Each subsequence of X corresponds to a subset of the indices {1,2,...,m} of 
the elements of X, so there are 2m subsequences of X to be enumerated. 
 

3.  Clearly, this is not a good approach...time to try dynamic programming! 

Recursive Solution to LCS Problem 
The recursive LCS Formulation 
•  Let C[i,j] = length of the LCS of Xi and Yj, where 

  Xi = 〈 x1, x2,..., xi 〉 and Yj = 〈 y1, y2,..., yj 〉  
•  Our goal:  C[m,n] (consider entire X and Y) 
•  Basis: C[0,j] = 0 and C[i,0] = 0 
•  C[i,j] is calculated as shown below (two cases): 

Case 1:  xi = yj (i, j > 0)
In this case, we can increase the size of the LCS of X i-1 and Yj-1
by one by appending xi = yj to the LCS of Xi-1 and Yj-1, i.e.,

C[i, j] = C[i-1, j-1] + 1

Case 2:  xi ≠ yj (i, j > 0)
In this case, we take the LCS to be the longer of the LCS of Xi-1 
and Yj, and the LCS of Xi and Yj-1, i.e.,

C[i, j] = max(C[i, j-1], C[i-1, j])
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Bottom-Up DP Solution to LCS Problem 
To compute C[i, j], we need the solutions to: 

    C[i-1, j-1] (when xi = yj) 
    C[i-1, j] and C[i, j-1] (when xi ≠ yj ) 

 
We need an m by n matrix to store results. 

LCS(X, Y) 
1.  m = length[X] 
2.  n = length[Y] 
3.  for i = 0 to m   C[i, 0] = 0  // 0 in first col of each row 
4.  for j = 0 to n    C[0, j] = 0 // 0 in first row of each col 
5.  for i = 1 to m do 
6.      for j = 1 to n do    // process row by row 

7.           if xi == yj   C[i, j] = C[i-1, j-1] + 1 
8.           else          C[i, j] = max (C[i, j-1], C[i-1, j]) 
9.  return C[m, n] 

Bottom-Up LCS DP 

Running time = O(mn) (constant time for each entry in C) 

This algorithm finds the value of the LCS, but how can we keep  
track of the characters in the LCS? 

We need to keep track of which neighboring table entry gave 
the optimal solution to a sub-problem (break ties arbitrarily). 

 if xi = yj  the answer came from the upper left (diagonal), 
 if xi ≠ yj the answer came from above or to the left, other- 

         wise, whichever value is larger (if equal, default to above).  

Bottom-Up DP Solution to LCS Problem 

As usual, we need a 
procedure to interpret 
the results of our DP 
solution. 
 
Idea:  Save a pointer  
to find the path 
representing the 
longest common 
subsequence.  Use a 2-
dimensional array B to 
store the pointers 
(initially this array will 
be all NIL). 

LCS(X, Y) 
 1.  m = length[X] 
 2.  n = length[Y] 
 3.  for i = 0 to m    C[i, 0] = 0 
 4.  for j = 0 to n     C[0, j] = 0 
 5.  for i = 1 to m  
 6.      for j = 1 to n  
 7.           if xi == yj  

  8.                 C[i, j] = C[i-1, j-1] + 1 
 9.                  B[i, j] = Up&Left 
10.          else  if C[i - 1, j]  >= C[i, j – 1] 
11.                       C[i, j] = C[i - 1, j] 
12.                       B[i, j] = Up 
13.           else      C[i , j] = C[i, j - 1] 
14.                        B[i, j] = Left 

Bottom-Up LCS DP 
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X = abba
Y = bab

Print-LCS (B, X, i, j) 
  1.  if i == 0 or j == 0 then return 
  2.  if B[i,j] == Up&Left 
  3.       Print-LCS(B,X,i-1,j-1) 
  4.       print xi 
  5.  else if B[i,j] = Up 
  6.       Print-LCS(B,X,i-1,j) 
  7.  else Print-LCS(B,X,i,j-1) 
 

Constructing the LCS 

Initial call is Print-LCS(B,X,len(X),len(Y)),
where B is the arrow table

Complexity of LCS Algorithm 

The running time of the LCS algorithm is O(mn), since 
each table entry takes O(1) time to compute. 
 
The running time of the Print-LCS algorithm is O(m + n), 
since one of m or n is decremented in each stage of the 
recursion. 


