
12/3/19

1

1

More dynamic programming

Dynamic programming solutions rely on the optimal
substructure property. Usually the recursive solutions
to these problems take exponential time with many
redundant calculations because the subproblems are
not independent.

One more dynamic programming example from
Chapter 15 that we will cover:

•  Matrix-Chain Product

Matrix-Chain Product
If A is an m × n matrix and B is an n × p matrix, then

 A ⋅ B = C is an m × p matrix

and the time needed to compute C is O(mnp).

•  there are mp elements of C
•  each element of C requires n scalar multiplications and n-1
 scalar additions

Matrix-Chain Multiplication Problem:

Given matrices A1, A2, A3, ..., An, where the dimension of Ai is pi-1 × pi,
determine the minimum number of multiplications needed to compute
the product A1 ⋅ A2 ⋅ ... ⋅ An. This involves finding the optimal way to
parenthesize the matrices.

For more than 2 matrices, there exists more than one order of multi-
plication.

Matrix-Chain Product
The running time of a brute-force solution (exhaustively checking all ways to
parenthesize 2 matrices) is:

 T(n) = 1 if n=1,

 = if n ≥ 2

Here, P(k) is the way to parenthesize first k matrices and P(n – k) is the way
to parenthesize the rest.

Hopefully, we can do better using Dynamic Programming.

P(k)P(n− k)
k=1

n−1

∑ =Ω(2n)

Matrix-Chain Product Example
A1 (4 × 2) A2 (2 × 5) A3 (5 × 1)

× ×

(A1 ⋅ A2) ⋅ A3
M1 = A1 ⋅ A2: requires 4 ⋅ 2 ⋅ 5 = 40 multiplications, M1 is 4 × 5 matrix
M2 = M1 ⋅ A3: requires 4 ⋅ 5 ⋅ 1 = 20 multiplications, M2 is 4 × 1 matrix
–> total multiplications = 40 + 20 = 60

A1 ⋅ (A2 ⋅ A3)
M1 = A2 ⋅ A3: requires 2 ⋅ 5 ⋅ 1 = 10 multiplications, M1 is 2 × 1 matrix
M2 = A1 ⋅ M1: requires 4 ⋅ 2 ⋅ 1 = 8 multiplications, M2 is 4 × 1 matrix
–> total multiplications = 10 + 8 = 18

Two ways to parenthesize this product:

p = (4, 2, 5, 1) dimension array

The order
of mult can
make a
difference
in # of steps

How do we
find the
minimum
over all
possibilities?

Matrix-Chain Product
The optimal substructure of this problem can be given with the
following argument:

Suppose an optimal way to parenthesize Ai Ai+1…Aj splits the product
between Ak and Ak+1. Then the way the prefix subchain Ai Ai+1…Ak is
parenthesized must be optimal. Why?

If there were a less costly way to parenthesize Ai Ai+1…Ak, substituting
that solution as the way to parenthesize Ai Ai+1…Aj gives a solution with
lower cost, contradicting the assumption that the way the original group
of matrices was parenthesized was optimal.

Therefore, the structure of the subproblem solutions must be optimal.

Matrix-Chain Product – Recursive Solution
RMP(p, i, j) // p is array of dimensions, initially i = 1, j = # of matrices
1. if i = j return 0 // nothing need be done with a single matrix

2. M[i,j] = ∞
3. for k = i to j-1
4. q = RMP(p, i, k) + RMP(p, k+1, j) + pi-1pkpj
5. if q < M[i,j] then M[i,j] = q
6. return M[i,j]

12/3/19

2

Matrix-Chain-Order (p) // p is array of dimensions
 1. n = p.length – 1
 2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables
 3. for i = 1 to n
 4. M[i,i] = 0 /** fill in main diagonal of M with 0s **/
 5. for d = 2 to n /** d is chain length**/
 6. for i = 1 to n – d + 1
 7. j = i + d - 1
 8. M[i, j] = ∞
 9. for k = i to j-1
 /** q is cost in scalar multiplications **/
10. q = M[i, k]+ M[k+1,j] + pi-1pkpj)
11. if q < M[i, j]
12. M[i, j] = q
13. s[i, j] = k
14. return M and s

Matrix-Chain Product – Bottom-up solution
Matrix-Chain-Order (p) /** p is array of dimensions **/
 1. n = p.length – 1
 2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables
 3. for i = 1 to n
 4. M[i,i] = 0 /** fill in main diagonal with 0s **/
 5. for d = 2 to n
 6. for i = 1 to n – d + 1
 7. j = i + d - 1
 8. M[i,j] = ∞
 9. for k = i to j-1
10. q = M[i,k]+ M[k+1,j] + pi-1pkpj)
11. if q < M[i,j]
12. M[i,j] = q
13. s[i,j] = k
14. return M and s

p = [30, 35, 15, 5, 10, 20, 25]

Matrix-Chain Product – Bottom-up solution

Matrix-Chain Product – Bottom-up solution
Input: s array, dimensions of M matrix
Output: side-effect printing of optimal parenthesization

Print-Optimal-Parens(s, i, j) // initially, i = 1 and j = n
 1. if i == j
 2. print “A”i

 3. else
 4. print “(”
 5. Print-Optimal-Parens(s, i, s[i, j])
 6. Print-Optimal-Parens(s, s[i, j] + 1, j)
 7. print “)”

“((A1 (A2 A3))((A4 A5) A6))”

Matrix-Chain Product – Bottom-Up Solution

Complexity: • O(n3) time because of the nested for loops with
 each of d, i, and k taking on at most n-1 values.

 • O(n2) space for two n x n matrices M and s

Longest Common Subsequence Problem (§ 15.4)

Problem: Given X = < x1, x2, ..., xm > and Y = <y1, y2,..., yn),
find a longest common subsequence (LCS) of X and Y.

Example:
 X = 〈 A, B, C, B, D, A, B 〉
 Y = 〈 B, D, C, A, B, A 〉
 LCSXY = 〈 B, C, B, A 〉 or LCSXY = 〈 B, D, A, B 〉)

Brute-Force solution:
1.  Enumerate all subsequences of X and check to see if they appear in the correct

order in Y (chars in sequences are not necessarily consecutive).

2.  Each subsequence of X corresponds to a subset of the indices {1,2,...,m} of
the elements of X, so there are 2m subsequences of X to be enumerated.

3.  Clearly, this is not a good approach...time to try dynamic programming!

Recursive Solution to LCS Problem
The recursive LCS Formulation
•  Let C[i,j] = length of the LCS of Xi and Yj, where

 Xi = 〈 x1, x2,..., xi 〉 and Yj = 〈 y1, y2,..., yj 〉
•  Our goal: C[m,n] (consider entire X and Y)
•  Basis: C[0,j] = 0 and C[i,0] = 0
•  C[i,j] is calculated as shown below (two cases):

Case 1: xi = yj (i, j > 0)
In this case, we can increase the size of the LCS of X i-1 and Yj-1
by one by appending xi = yj to the LCS of Xi-1 and Yj-1, i.e.,

C[i, j] = C[i-1, j-1] + 1

Case 2: xi ≠ yj (i, j > 0)
In this case, we take the LCS to be the longer of the LCS of Xi-1
and Yj, and the LCS of Xi and Yj-1, i.e.,

C[i, j] = max(C[i, j-1], C[i-1, j])

12/3/19

3

Bottom-Up DP Solution to LCS Problem
To compute C[i, j], we need the solutions to:

 C[i-1, j-1] (when xi = yj)
 C[i-1, j] and C[i, j-1] (when xi ≠ yj)

We need an m by n matrix to store results.

LCS(X, Y)
1. m = length[X]
2. n = length[Y]
3. for i = 0 to m C[i, 0] = 0 // 0 in first col of each row
4. for j = 0 to n C[0, j] = 0 // 0 in first row of each col
5. for i = 1 to m do
6. for j = 1 to n do // process row by row

7. if xi == yj C[i, j] = C[i-1, j-1] + 1
8. else C[i, j] = max (C[i, j-1], C[i-1, j])
9. return C[m, n]

Bottom-Up LCS DP

Running time = O(mn) (constant time for each entry in C)

This algorithm finds the value of the LCS, but how can we keep
track of the characters in the LCS?

We need to keep track of which neighboring table entry gave
the optimal solution to a sub-problem (break ties arbitrarily).

 if xi = yj the answer came from the upper left (diagonal),
 if xi ≠ yj the answer came from above or to the left, other-

 wise, whichever value is larger (if equal, default to above).

Bottom-Up DP Solution to LCS Problem

As usual, we need a
procedure to interpret
the results of our DP
solution.

Idea: Save a pointer
to find the path
representing the
longest common
subsequence. Use a 2-
dimensional array B to
store the pointers
(initially this array will
be all NIL).

LCS(X, Y)
 1. m = length[X]
 2. n = length[Y]
 3. for i = 0 to m C[i, 0] = 0
 4. for j = 0 to n C[0, j] = 0
 5. for i = 1 to m
 6. for j = 1 to n
 7. if xi == yj

 8. C[i, j] = C[i-1, j-1] + 1
 9. B[i, j] = Up&Left
10. else if C[i - 1, j] >= C[i, j – 1]
11. C[i, j] = C[i - 1, j]
12. B[i, j] = Up
13.  else C[i , j] = C[i, j - 1]
14.  B[i, j] = Left

Bottom-Up LCS DP

b a b

a

b

b

a

j ⇒ 0 1 2 3
i
⇓
0

1

2

3

4

0 0 0 0

0 0 1 1

0 1 1 2

0 1 1 2

0 1 2 2

↑ ↑ ↑
↑

↑↑
↑

↑

↑

↑

↑

↑

X = abba
Y = bab

Print-LCS (B, X, i, j)
 1. if i == 0 or j == 0 then return
 2. if B[i,j] == Up&Left
 3. Print-LCS(B,X,i-1,j-1)
 4. print xi
 5. else if B[i,j] = Up
 6. Print-LCS(B,X,i-1,j)
 7. else Print-LCS(B,X,i,j-1)

Constructing the LCS

Initial call is Print-LCS(B,X,len(X),len(Y)),
where B is the arrow table

Complexity of LCS Algorithm

The running time of the LCS algorithm is O(mn), since
each table entry takes O(1) time to compute.

The running time of the Print-LCS algorithm is O(m + n),
since one of m or n is decremented in each stage of the
recursion.

