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Medians and Order Statistics Ch. 9
Let A be an ordered set containing n distinct elements:

Definition:  The ith order statistic is the ith smallest element, e.g.,
•    minimum = 1st order statistic
•    maximum = nth order statistic
•    median(s) = ⎣(n+1)/2⎦  and ⎡(n+1)/2⎤ 

Selection Problem: Find the ith order statistic for a given i
input:    Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output:  The element x∈ A that is larger than exactly (i - 1)  

 elements of A

O(nlgn) solution to selection problem
Selection Problem: Find the ith order statistic for a given i
input:    Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output:  The element x∈ A that is larger than exactly (i - 1)  

  elements of A

NaiveSelection(A, i)
1. A' = FavoriteSort(A)              
2. return A'[i]

Running Time:
O(nlgn) for comparison-based 
sorting.
Can we do better???

Idea:  Use an O(nlgn) sorting 
algorithm, such as heapsort or 
mergesort. Then return the ith 
element in the sorted array.

Any ideas for an algorithm to find 
the minimum?

Finding Minimum (or Maximum)

Is this the best possible time for finding the minimum? 
 
Yes!

Why are n - 1 comparisons necessary?
•  Any algorithm that finds the minimum must compare all elements 

with the "leader" (think of a tournament).
•  so...there must be at least n – 1 losers (and each loss requires a 

comparison)
•  We must look at every key, otherwise the missed one may be the 

minimum.  Each look (except the first) requires a comparison.

Minimum(A)
1. lowest = A[1]              
2. for i = 2 to n 
3.       lowest = min(lowest, A[i])

Running Time:
 - just scan input array
 - exactly n-1 comparisons

Finding Minimum & Maximum
What if we want to find both the minimum and maximum elements in a 
set?

How many comparisons are necessary?
•  Plan A:  find the minimum and maximum separately using n – 1  

comparisons for min and n – 2 for max  =  2n – 3 comparisons
Is it possible to do better?  

l Plan B: Process elements in pairs.  Compare pairs of elements from 
the input first with each other and then compare the smaller to the 
current min and the larger to the current max, changing current 
values of max and/or min if necessary.   
Cost = at most 3 compares for every 2 elements.
Total cost = 3⎣n/2⎦. 

Finding Minimum & Maximum
FindMin&Max(A)
if length[A] % 2 == 0
     if A[1] > A[2]
          min = A[2]
          max = A[1]
     else 
          min = A[1]
          max = A[2] 
else // n % 2 == 1
     min=max=A[1]
Compare the rest of the 
elements in pairs, 
comparing only the 
maximum element of each 
pair with max and the 
minimum element of each 
pair with min

Analysis of FindMin&Max
l  If n is even, there is 1 initial compare and then 3(n-2)/2 + 1 

compares = 3n/2 – 2
l  If n is odd, there are 3(n-1)/2 compares
l  In either case, the maximum number of compares is ≤ 3⎣n/2⎦

FindMin&Max(A)
1.  if length[A] % 2 == 0
2.      if A[1] > A[2]
3.            min = A[2]
4.            max = A[1]
5.       else min = A[1]
6.                   max = A[2] 

7.       else // n % 2 == 1
8.           min=max=A[1]
9.  Compare the rest of the 

elements in pairs, comparing 
only the maximum element 
of each pair with max and the 
minimum element of each 
pair with min
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Selection of ith-order statistic  
in (Expected) Linear Time

•  Randomized-Partition first swaps A[r] with a random element 
of A and then proceeds as in Partition.

Randomized-Partition(A, p, r)
1. j ← Random(p, r)
2. swap A[r] ↔ A[j]
3. return Partition(A, p, r)

Selection of ith-order statistic in  
(Expected) Linear Time

•  Randomized-Select returns the ith smallest element of A.
- like Randomized-QuickSort, 
  except we only need to make 
  one of the recursive calls.  
  Why?

Randomized-Partition(A, p, r)
1. j ← Random(p, r)
2. swap A[r] ↔ A[j]
3. return Partition(A, p, r)

Randomized-Select(A, p, r, i)  
1. if p = r then return A[p]
2. q = Randomized-Partition(A, p, r)
3. k = q – p + 1
4. if i == k return A[q]
5. else if  i < k  return Randomized-Select(A, p, q-1, i) \\ lower half
6. else return Randomized-Select(A, q+1, r, i - k) \\ upper half

Running Time of Randomized-Select
•  Worst-case : unlucky with bad 0 : n - 1 partitions.

T(n) = T(n - 1) + θ(n) = θ(n2) 
(same as for worst-case of QuickSort)

•  Best-case : really lucky and quickly reduce subarrays
T(n) = T(n/2) +  θ(n)   (what is running time if we use the 
Master Theorem?) 

•  Average-case : like Quick-Sort, will be asymptotically close to 
best-case.

Selection in Linear Worst-Case Time
Key:  Guarantee a "good" split when array is partitioned - will    
       yield an algorithm that always runs in linear time.

Select(A, i)      /* i is the ith order statistic. */ 
1.  divide input array A into ⎣n/5⎦ groups of size 5 per group  

 (and one leftover group if n % 5 != 0) 
2.  find the median of each group of size 5 by insertion sorting 

 the groups of 5, picking the middle elements of each group 
of 5 and putting it into an array A’. 

3.  call Select recursively on A’ to find x, the median of the 
⎡n/5⎤ medians. 

4.  partition A around x, splitting it into two arrays  
A[p, q-1] and A[q+1, r] and returning q, the index of the  
split point  (uses modified Partition on next slide).  

5.  if (i = q) return x 
 else if (i < q) then                    
        call Select on the part of A < q 
 else call Select on the part of A > q 

Selection in Linear Worst-Case Time
Modified version of Partition that takes as an extra input parameter the 
value of the element to partition around, x.

Partition(A, p, r, x)
1. i = p - 1
2. for j = p to r – 1 
3.      if A[j] ≤ x
4.             i = i + 1
5.             swap A[i] and A[j]    
6. swap A[i+1] and  A[r]
7. return i + 1

Selection in Linear Worst-Case Time
Main idea:  this algorithm guarantees that Partition causes a "good" split, 

with at least a constant fraction of the n elements <= x and a constant 
fraction > x.

Start the analysis by getting a lower bound on the number of elements 
that are greater than x, the median of medians.

Note:
•  At least 1/2 of the medians found in step 2 are greater than the median of 

medians, x.  

•  Look at the groups containing medians greater than x.  Each contributes 
3 elements that are > x (the median of the group and the 2 elements in 
the group greater than the group's median), except for 2 of the groups:  
the group containing x (which has only 2 elements > x) and the group 
with < 5 elements.  
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Selection in Linear Worst-Case Time
• Thus, we know that at least 
 
    3( ⎡1/2 ⎡n/5⎤⎤ - 2)  ≥  3n/10 - 6 

elements are > x (Symmetrically, the number of elements 
that are < x is at least 3n/10 - 6). 

Therefore, when we call Select recursively in step 5, it is on 
at most (7n/10) + 6 elements.  Find this value by using  

 
          10n/10 – (3n/10 – 6) = (7n/10) + 6 

Running Time of Select
Running Time (each step): 
1. O(n)            (break into groups of 5) 
2. O(n)            (sorting 5 numbers and finding median is O(1)  

       time) 
3. T(⎡n/5⎤)       (recursive call to find median of medians) 
4. O(n)       (partition is linear time) 
5. T(7n/10 + 6)  (maximum size of subproblem) 
 
Therefore, we get the recurrence 
 

     T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n) 

Running Time of Select
 

Solve this recurrence using a good guess.  Guess T(n) ≤ cn 
 T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n) 
         ≤ c⎡n/5⎤ + c(7n/10 + 6) + O(n) 
         ≤ c((n/5) + 1) + 7cn/10 + 6c + O(n) 
         = cn - (cn/10 - 7c) + O(n) 

         ≤  cn    
When n >= 80 (cn/10 -7c) is positive 

Choosing big enough c makes O(n) + (cn/10 -7c) positive, so 
last line holds. (Try c = 200) 


