
10/17/19

1

Medians and Order Statistics Ch. 9
Let A be an ordered set containing n distinct elements:

Definition: The ith order statistic is the ith smallest element, e.g.,
•  minimum = 1st order statistic
•  maximum = nth order statistic
•  median(s) = ⎣(n+1)/2⎦ and ⎡(n+1)/2⎤

Selection Problem: Find the ith order statistic for a given i
input: Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output: The element x∈ A that is larger than exactly (i - 1)

 elements of A

O(nlgn) solution to selection problem
Selection Problem: Find the ith order statistic for a given i
input: Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output: The element x∈ A that is larger than exactly (i - 1)

 elements of A

NaiveSelection(A, i)
1. A' = FavoriteSort(A)
2. return A'[i]

Running Time:
O(nlgn) for comparison-based
sorting.
Can we do better???

Idea: Use an O(nlgn) sorting
algorithm, such as heapsort or
mergesort. Then return the ith
element in the sorted array.

Any ideas for an algorithm to find
the minimum?

Finding Minimum (or Maximum)

Is this the best possible time for finding the minimum?

Yes!

Why are n - 1 comparisons necessary?
•  Any algorithm that finds the minimum must compare all elements

with the "leader" (think of a tournament).
•  so...there must be at least n – 1 losers (and each loss requires a

comparison)
•  We must look at every key, otherwise the missed one may be the

minimum. Each look (except the first) requires a comparison.

Minimum(A)
1. lowest = A[1]
2. for i = 2 to n
3. lowest = min(lowest, A[i])

Running Time:
 - just scan input array
 - exactly n-1 comparisons

Finding Minimum & Maximum
What if we want to find both the minimum and maximum elements in a
set?

How many comparisons are necessary?
•  Plan A: find the minimum and maximum separately using n – 1

comparisons for min and n – 2 for max = 2n – 3 comparisons
Is it possible to do better?

l Plan B: Process elements in pairs. Compare pairs of elements from
the input first with each other and then compare the smaller to the
current min and the larger to the current max, changing current
values of max and/or min if necessary.  
Cost = at most 3 compares for every 2 elements.
Total cost = 3⎣n/2⎦.

Finding Minimum & Maximum
FindMin&Max(A)
if length[A] % 2 == 0
 if A[1] > A[2]
 min = A[2]
 max = A[1]
 else
 min = A[1]
 max = A[2]
else // n % 2 == 1
 min=max=A[1]
Compare the rest of the
elements in pairs,
comparing only the
maximum element of each
pair with max and the
minimum element of each
pair with min

Analysis of FindMin&Max
l  If n is even, there is 1 initial compare and then 3(n-2)/2 + 1

compares = 3n/2 – 2
l  If n is odd, there are 3(n-1)/2 compares
l  In either case, the maximum number of compares is ≤ 3⎣n/2⎦

FindMin&Max(A)
1.  if length[A] % 2 == 0
2.  if A[1] > A[2]
3.  min = A[2]
4.  max = A[1]
5.  else min = A[1]
6.  max = A[2]

7.  else // n % 2 == 1
8.  min=max=A[1]
9.  Compare the rest of the

elements in pairs, comparing
only the maximum element
of each pair with max and the
minimum element of each
pair with min

10/17/19

2

Selection of ith-order statistic  
in (Expected) Linear Time

•  Randomized-Partition first swaps A[r] with a random element
of A and then proceeds as in Partition.

Randomized-Partition(A, p, r)
1. j ← Random(p, r)
2. swap A[r] ↔ A[j]
3. return Partition(A, p, r)

Selection of ith-order statistic in  
(Expected) Linear Time

•  Randomized-Select returns the ith smallest element of A.
- like Randomized-QuickSort,
 except we only need to make
 one of the recursive calls.
 Why?

Randomized-Partition(A, p, r)
1. j ← Random(p, r)
2. swap A[r] ↔ A[j]
3. return Partition(A, p, r)

Randomized-Select(A, p, r, i)
1. if p = r then return A[p]
2. q = Randomized-Partition(A, p, r)
3. k = q – p + 1
4. if i == k return A[q]
5. else if i < k return Randomized-Select(A, p, q-1, i) \\ lower half
6. else return Randomized-Select(A, q+1, r, i - k) \\ upper half

Running Time of Randomized-Select
•  Worst-case : unlucky with bad 0 : n - 1 partitions.

T(n) = T(n - 1) + θ(n) = θ(n2)
(same as for worst-case of QuickSort)

•  Best-case : really lucky and quickly reduce subarrays
T(n) = T(n/2) + θ(n) (what is running time if we use the
Master Theorem?)

•  Average-case : like Quick-Sort, will be asymptotically close to
best-case.

Selection in Linear Worst-Case Time
Key: Guarantee a "good" split when array is partitioned - will
 yield an algorithm that always runs in linear time.

Select(A, i) /* i is the ith order statistic. */
1.  divide input array A into ⎣n/5⎦ groups of size 5 per group

 (and one leftover group if n % 5 != 0)
2.  find the median of each group of size 5 by insertion sorting

 the groups of 5, picking the middle elements of each group
of 5 and putting it into an array A’.

3.  call Select recursively on A’ to find x, the median of the
⎡n/5⎤ medians.

4.  partition A around x, splitting it into two arrays
A[p, q-1] and A[q+1, r] and returning q, the index of the
split point (uses modified Partition on next slide).

5.  if (i = q) return x
 else if (i < q) then
 call Select on the part of A < q
 else call Select on the part of A > q

Selection in Linear Worst-Case Time
Modified version of Partition that takes as an extra input parameter the
value of the element to partition around, x.

Partition(A, p, r, x)
1. i = p - 1
2. for j = p to r – 1
3. if A[j] ≤ x
4. i = i + 1
5. swap A[i] and A[j]
6. swap A[i+1] and A[r]
7. return i + 1

Selection in Linear Worst-Case Time
Main idea: this algorithm guarantees that Partition causes a "good" split,

with at least a constant fraction of the n elements <= x and a constant
fraction > x.

Start the analysis by getting a lower bound on the number of elements
that are greater than x, the median of medians.

Note:
•  At least 1/2 of the medians found in step 2 are greater than the median of

medians, x.  

•  Look at the groups containing medians greater than x. Each contributes
3 elements that are > x (the median of the group and the 2 elements in
the group greater than the group's median), except for 2 of the groups:
the group containing x (which has only 2 elements > x) and the group
with < 5 elements.

10/17/19

3

Selection in Linear Worst-Case Time
• Thus, we know that at least

 3(⎡1/2 ⎡n/5⎤⎤ - 2) ≥ 3n/10 - 6

elements are > x (Symmetrically, the number of elements
that are < x is at least 3n/10 - 6).

Therefore, when we call Select recursively in step 5, it is on
at most (7n/10) + 6 elements. Find this value by using

 10n/10 – (3n/10 – 6) = (7n/10) + 6

Running Time of Select
Running Time (each step):
1. O(n) (break into groups of 5)
2. O(n) (sorting 5 numbers and finding median is O(1)

 time)
3. T(⎡n/5⎤) (recursive call to find median of medians)
4. O(n) (partition is linear time)
5. T(7n/10 + 6) (maximum size of subproblem)

Therefore, we get the recurrence

 T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n)

Running Time of Select

Solve this recurrence using a good guess. Guess T(n) ≤ cn
 T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n)
 ≤ c⎡n/5⎤ + c(7n/10 + 6) + O(n)
 ≤ c((n/5) + 1) + 7cn/10 + 6c + O(n)
 = cn - (cn/10 - 7c) + O(n)

 ≤ cn
When n >= 80 (cn/10 -7c) is positive

Choosing big enough c makes O(n) + (cn/10 -7c) positive, so
last line holds. (Try c = 200)

