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QuickSort (Ch. 7) 

Quicksort(A, p, r)
1. if p < r
2.      q = Partition(A, p, r)
3.      Quicksort(A, p, q-1)
4.      Quicksort(A, q+1, r)

Input: An n-element array A (unsorted). 
Output: An n-element array A in non-decreasing order. 

Partition(A, p, r)
1. x = A[ r ]  // choose pivot
2. i = p – 1   
3. for j = p to r – 1  
4.       if A[ j ] <= x
5.              i =  i + 1
6.              swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and  A[ r ]
8.  return i + 1

Initial call: 
Quicksort(A, 1, A.length) 

QuickSort 
A divide-and-conquer algorithm. 
 
Divide:  Choose index q, set the pivot to = A[q] (the value A 
will be divided around) and rearrange the array A[p..r] into 
two (one possibly empty) subarrays A[p..q-1] and A[q+1..r] 
such that each element of A[p..q-1] ≤ A[q] and each element 
of A[q+1..r] > A[q]. 
 
Conquer:  Sort the two subarrays A[p..q-1] and A[q+1..r] 
recursively. 
 
Combine:  No work is needed to combine subarrays since 
they are sorted in-place. 
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What does Partition do?   Divides the array around x. 
What is running time of Partition?  Linear 

Divide:  Rearrange the array A[p..r] into two (possibly empty) subarrays 
A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] ≤ A[q] and 
each element of A[q+1..r] > A[q] after computation of index q. 

Correctness of Quicksort

Claim:  Partition satisfies the specifications of the Divide step.    

Loop invariant:  At the beginning 
of each iteration of the for loop 
(lines 3-6), for any array index k,

1.  If p <=  k <=  i, then A[k] <=  x.
2.  If i+1 <=  k <=  j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

Partition(A, p, r)
1. x = A[r]  // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.       if A[ j ] <= x
5.              i =  i + 1
6.              swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and A[ r ]
8.  return i + 1

Notice that there is a gap between 
j and r for which no claim is made. 
But that's OK. 

Initialization:  i = p-1 = 0 and j = p = 1.  k cannot be between 0 and 1 (cond. 1), 
nor can k be between  i+1 = 1 and j - 1 = 0 (cond.2). Partition satisfies condition 
3 in this case.

Inductive Hypothesis:  Assume the invariant holds through iteration j = k < n -1.

Ind. Step:  In iteration k+1, either A[ j ] > x or A[ j ] <=  x.  In the first case, j is 
incremented and cond. 2 holds for A[ j-1 ] with no other changes. In the second 
case, i is incremented, A[ i ] and A[ j ] are swapped, and then j is incremented. 
Cond. 1 holds for A[ i ] after swap.  By the IHOP, the item in A[ i ] was in A[ i+1 ] 
during the last iteration, and was > x then, so cond. 2 holds at the end of 
iteration k+1.
 
Termination:  At termination, j = r and A has been partitioned into 3 sets:  items 
<=  x, items > x, and A[ j ] = x. 

Loop invariant:  At the beginning of each iteration of the 
for loop (lines 3-6), for any array index k,

1.  If p <=  k <=  i, then A[k] <=  x.
2.  If i+1 <=  k <=  j-1, then A[k] > x.
3.  If k=r, then A[k] = x.

Partition(A, p, r)
1. x = A[r]  // choose pivot
2. i = p - 1
3. for j = p to r - 1
4.       if A[ j ] <= x
5.              i =  i + 1
6.              swap A[ i ] and A[ j ]    
7.  swap A[ i+1 ] and A[ r ]
8.  return i + 1

Quicksort Running Time 
T(n) = T(q - p) + T(r - q) + O(n) 

The value of T(n) depends on the location of q in the array A[p..r].
Since we don't know this in advance, we must look at worst-case,
best-case, and average-case partitioning.

Worst-case partitioning:  Each partition results in a 0 : n-1 split
T(0) = θ(1) and the partitioning costs θ(n), so recurrence is

T(n) = T(n-1) + T(0) + θ(n) = T(n-1) + θ(n)
This is an arithmetic series which evaluates to           .  So 
worst-case for Quicksort is no better than Insertion sort!

What does the input look like in Quicksort's worst-case?

θ(n2)
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Quicksort Best-case 
T(n) = T(q - p) + T(r - q) + O(n) 

Best-case partitioning:  Each partition results in a ⎣n/2⎦ : ⎡n/2⎤ -1 
split (i.e., close to balanced split each time), so recurrence is

T(n) = 2T(n/2) + θ(n)

By case 2 of the master theorem, this recurrence evaluates to            θ(nlgn)

Quicksort Average-case
Intuition:  Some splits will be close to balanced and others close to 
unbalanced ⇒  good and bad splits will be randomly distributed in 
recursion tree.

The running time will be (asymptotically) bad only if there are many 
bad splits in a row.

•  A bad split followed by a good split results in a good partitioning
after one extra step. 

•  Implies a θ(nlgn)  average case running time (with a larger 
constant factor to ignore).

Randomized Quicksort 
How can we modify Quicksort to get good average case behavior on
all inputs?  Answer:  Randomization!
2 techniques:
1. randomly permute input prior to running Quicksort.  Will produce

tree of possible executions, most of them finish fast.
2.  choose partition randomly at each iteration instead of choosing

element in highest array position.

Randomized-Partition(A, p, r)
1. i = Random(p, r)
2. swap A[r] ↔ A[i]
3. return Partition(A, p, r)

In section 7.4, a probabilistic analysis  
is presented, showing that the expected  
running time of Randomized-Quicksort  
is O(nlgn) 


