
1/25/19

1

CS241 – Analysis of Algorithms
Spring 2019

•  Prerequisites: CMPU102 and CMPU145.

•  Lectures: M & W @ 9:00 to 10:15 am in SP 105.

•  Textbook: Introduction to Algorithms (3rd Edition), by Thomas H.

Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
(CLRS).

•  Course web page: https://www.cs.vassar.edu/~cs241/spr19/

All information on course will be posted on the page above.

Course Assignments/Announcements

•  No solutions will be accepted without an
excused absence after graded solutions are
handed back.

•  Check your e-mail frequently for course
announcements.

Algorithms

• For the purposes of this class, an algorithm is a
computational procedure that takes some value, or set
of values, as input and produces some value, or set of
values, as output, and eventually terminates.

What is an algorithm?

Algorithmic Problem

•  An algorithmic problem is the complete set of possible
input instances the algorithm may work on and the
desired output from each input instance.

What is an algorithmic problem?

Measures of Complexity
What metrics of an algorithm are considered
when comparing algorithm complexity?

Time

Space

Number of messages (distributed algorithms)

Power consumption (ad hoc networks)

Algorithm Time Efficiency

Observation: Most algorithms that do anything with their
input run longer on larger inputs.

Therefore, it is logical to investigate an algorithm’s efficiency
as a function of some parameter n indicating the algorithm’s
input size.

1/25/19

2

Analyzing Algorithms
Goal: to predict the number of steps executed by an
algorithm in a machine- and language-independent way
using 2 simplifying assumptions:

Analyzing Algorithms
Simplifying assumption 1 –

We use the RAM model of computation: Single
processor with sequential instruction execution (no
parallel computation).

Running time of algorithm can be described with a
mathematical function of the input size n.

Analyzing Algorithms
Simplifying assumption 2 –

We use asymptotic analysis of worst-case complexity.
The asymptotic behavior of a function f(n) refers to the
growth of f(n) as n gets very large.

Comparing the asymptotic running time of algorithms
lets us ignore constant multiples and lower-order
terms in the equation describing the running time.

Different ways to measure algorithm time
1.  Implement algorithm and include a system call to count the

number of milliseconds it takes to run.

2.  Count the exact number of times each of the algorithm’s
operations is executed, assuming each particular line takes a
constant amount of time for a data set of size n, and add time of
all lines to get a polynomial expression in terms of n.

3.  Identify the operations (lines) that contribute most to the total
running time and count the number of times that operation is
executed (best option).

 ==> the basic operation (aka dominant operation)

Algorithm Time Efficiency
Some algorithms take the same amount of time on all input instances.
For these algorithms, the running time is given as a constant.

For some algorithms, there is only a worst-case time for all input
instances of a particular size, n.

For other algorithms, there are best-case, worst-case, and average-
case input instances that depend on other qualities of the input than
just the input size.

For algorithm A on all possible inputs of size n:

Worst-case: The input(s) for which A executes the most steps.

Best-case: The input(s) for which A executes the fewest steps.

Reading assignment:
Chapters 1-4 in CLRS

1/25/19

3

Asymptotic Analysis-Ch. 3
Main idea: Running time is measured in the limit as the input
size grows to infinity.

•  focus on calculating algorithm running time in terms of its
 rate of growth with increasing problem size. To make this
 task easier, we can
 - identify terms of highest order and ignore lower order terms
 - disregard multiplicative constants

Saying an algorithm has running time θ(n2) says that the order
of growth of the running time is in the set of functions whose
running time is n2, a quadratic function of n

Asymptotic Analysis

•  Names for classes of algorithms:
 constant θ(n0) = θ(1)
 logarithmic θ(lgn)
 polylogarithmic θ(lgkn), k ≥ 1

 linear θ(n)
 linearithmic θ(nlgn)
 quadratic θ(n2)
 cubic θ(n3)
 polynomial θ(nk), k ≥ 1

 exponential θ(an), a > 1

Growth
Rate

Increasing

Asymptotic Analysis
Example: As n grows larger, an algorithm with running time
of order n2 will "eventually" run slower than one with running
time of order n, which in turn will eventually run slower than
one with running time of order (lgn).

Asymptotic analysis in terms of "Big Oh", "Big Omega", and
"Theta" are the classification schemes we will use to make
these notions precise.

Note: Our conclusions will only be valid "in the limit" or
"asymptotically". That is, they may not hold true for small
values of n.

"Big Oh" - Upper Bounding Running Time

Definition: f(n) ∈ O(g(n)) if there exist constants c > 0 and
n0 ≥ 1 such that

 f(n) ≤ cg(n) for all n ≥ n0.

Intuition:
•  f(n) ∈ O(g(n)) means f(n) is “of order at most”, or “less than or
 equal to” g(n) when we ignore small values of n and constants

•  some constant multiple of g(n) is an upper bound for f(n)
 (for large enough n)

Example: (lgn)2 is O(n)

(lgn)2 ≤ n for all n0 ≥ 16, so (lgn)2 is O(n)
(lgn)2 = lg2n

f(n) = (lgn)2

g(n) = n
n0 = 16

 Asymptotic notation and logarithms:

logb n = log2 n
 log2 b

– changing base b changes only constant

factor that can be ignored
– When we say f(n) ∈ O(log n), the base of

the log is unimportant (but it will usually
be log2n, written as lgn).

1/25/19

4

"Big Omega" - Lower Bounding Running Time

Definition: f(n) ∈ Ω(g(n)) if there exist constants c > 0 and
n0 ≥ 1 such that

 f(n) ≥ cg(n) for all n ≥ n0.

Intuition:
•  f(n) ∈ Ω(g(n)) means f(n) is “of order at least” or “greater than or
 equal to” g(n) when we ignore small values of n.

•  some constant multiple of g(n) is a lower bound for f(n)
 (for large enough n).

"Theta" - Tightly Bounding Running Time

Definition: f(n) ∈ θ(g(n)) if there exist constants c1, c2 > 0
and n0 ≥ 1 such that

 c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.

Intuition:
•  f(n) ∈ θ(g(n)) means f(n) is “of the same order as”, or “equal to”
 g(n) when we ignore small values of n.

Useful way to show "Theta" relationships:
q  Show both a "Big Oh" and "Big Omega" relationship.

Asymptotic Analysis

•  Classifying algorithms is generally done in terms of
worst-case running time Big Oh or Theta. We rarely
express the running time in terms of Big Omega. If f(n)
∈ O(g(n)) and f(n) ∈ Ω(g(n)), then f(n) ∈ Θ(g(n)) :

–  O (f(n)): Big Oh--asymptotic upper bound.
–  Ω (f(n)): Big Omega--asymptotic lower bound

–  Θ (f(n)): Theta--asymptotic tight bound

Little Oh

"Little Oh" notation is used to denote strict upper bounds,
(Big-Oh bounds are not necessarily strict inequalities).

Definition: f(n) ∈ o(g(n)) if for every c > 0, there exists
some n0 ≥ 1 such that for all n ≥ n0, f(n) < cg(n).

Intuition:
•  f(n) ∈ o(g(n)) means f(n) is "strictly less than" any constant multiple
 of g(n) when we ignore small values of n

•  f(n) is trapped below any constant multiple of g(n) for large enough n

•  For example, if f(n) ∈ O(n), then f(n) ∈ o(n2)

Little Omega

"Little Omega" notation is used to denote strict lower
bounds (Ω bounds are not necessarily strict inequalities).

Definition: f(n) ∈ ω(g(n)) if for every c > 0, there exists
some n0 ≥ 1 such that for all n ≥ n0, f(n) > cg(n).

Intuition:
•  f(n) ∈ ω(g(n)) means f(n) is "strictly greater than" any constant
 multiple of g(n) when we ignore small values of n

•  f(n) is trapped above any constant multiple of g(n) for large enough n

Using Limits to Compare Orders of Growth

Showing "Little Oh and Little Omega" relationships:

 lim f(n) / g(n) = 0 implies that f(n) has a smaller

 n→∞ order of growth than g(n)

 lim f(n) / g(n) = c > 0 implies that f(n) has the same

 n→∞ order of growth as g(n) (c is constant)

 lim f(n) / g(n) = ∞ implies that f(n) has a larger
 n→∞ order of growth than g(n)

1/25/19

5

Little Oh and Little Omega

Showing "Little Oh and Little Omega" relationships:

 f(n) ∈ o(g(n)) iff lim f(n) / g(n) = 0
 n→∞

 f(n) ∈ ω(g(n)) iff lim f(n) / g(n) = ∞
 n→∞

 Showing Theta relationships

 f(n) ∈ Θ(g(n)) iff lim f(n) / g(n) = c > 0
 n→∞

Basic asymptotic efficiency classes
Class Name Comments

1 Constant Algorithm ignores input
(i.e., can’t even scan input)

lgn Logarithmic Cuts problem size by constant fraction on each
iteration

n Linear Algorithm scans its input (at least)

nlgn Linearithmic Some divide and conquer; best sorting time.

n2 Quadratic Loop inside loop = “nested loop”

n3 Cubic Loop inside nested loop

2n Exponential Algorithm generates all subsets of
 n-element set

n! Factorial Algorithm generates all permutations of
 n-element set

