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CS241 – Analysis of Algorithms 
Spring 2019 

•  Prerequisites:  CMPU102 and CMPU145.  
 
•  Lectures:  M & W  @ 9:00 to 10:15 am in SP 105.   

 
•  Textbook:  Introduction to Algorithms (3rd Edition), by Thomas H. 

Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein 
(CLRS). 
 

•  Course web page:   https://www.cs.vassar.edu/~cs241/spr19/ 
 
All information on course will be posted on the page above. 

 

Course Assignments/Announcements 

•  No solutions will be accepted without an 
excused absence after graded solutions are 
handed back. 
  

•  Check your e-mail frequently for course 
announcements. 

 

Algorithms 

• For the purposes of this class, an algorithm is a 
computational procedure that takes some value, or set 
of values, as input and produces some value, or set of 
values, as output, and eventually terminates. 

 
 

What is an algorithm? 

Algorithmic Problem 

•  An algorithmic problem is the complete set of possible 
input instances the algorithm may work on and the 
desired output from each input instance.  

 
 

What is an algorithmic problem? 

Measures of Complexity 
What metrics of an algorithm are considered 
when comparing algorithm complexity? 

Time 
 
Space 
 
Number of messages (distributed algorithms) 
 
Power consumption (ad hoc networks) 

Algorithm Time Efficiency 

Observation:  Most algorithms that do anything with their 
input run longer on larger inputs.   
 
Therefore, it is logical to investigate an algorithm’s efficiency 
as a function of some parameter n indicating the algorithm’s 
input size. 
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Analyzing Algorithms 
Goal:  to predict the number of steps executed by an 
algorithm in a machine- and language-independent way 
using 2 simplifying assumptions: 
 
 

  

Analyzing Algorithms 
Simplifying assumption 1 –  
 
 

We use the RAM model of computation: Single 
processor with sequential instruction execution (no 
parallel computation). 
 
Running time of algorithm can be described with a 
mathematical function of the input size n. 

 

  

Analyzing Algorithms 
Simplifying assumption 2 –  
 

 

We use asymptotic analysis of worst-case complexity. 
The asymptotic behavior of a function f(n) refers to the 
growth of f(n) as n gets very large. 
 
Comparing the asymptotic running time of algorithms 
lets us ignore constant multiples and lower-order 
terms in the equation describing the running time.  

  

Different ways to measure algorithm time 
1.  Implement algorithm and include a system call to count the 

number of milliseconds it takes to run. 

2.  Count the exact number of times each of the algorithm’s 
operations is executed, assuming each particular line takes a 
constant amount of time for a data set of size n, and add time of 
all lines to get a polynomial expression in terms of n.   
 

3.  Identify the operations (lines) that contribute most to the total 
running time and count the number of times that operation is 
executed  (best option).  

             
 ==> the basic operation (aka dominant operation) 

 

Algorithm Time Efficiency 
Some algorithms take the same amount of time on all input instances.  
For these algorithms, the running time is given as a constant.  
 
For some algorithms, there is only a worst-case time for all input 
instances of a particular size, n. 
 
For other algorithms, there are best-case, worst-case, and average-
case input instances that depend on other qualities of the input than 
just the input size.   
 
For algorithm A on all possible inputs of size n:  

 

Worst-case:  The input(s) for which A executes the most steps.   
 

Best-case:  The input(s) for which A executes the fewest steps. 
 
 

Reading assignment:  
Chapters 1-4 in CLRS 

 
 
 
 
 



1/25/19

3

Asymptotic Analysis-Ch. 3 
Main idea: Running time is measured in the limit as the input 
size grows to infinity. 
 
 

•  focus on calculating algorithm running time in terms of its 
  rate of growth with increasing problem size.  To make this  
  task easier, we can 
  -  identify terms of highest order and ignore lower order terms 
  - disregard multiplicative constants  
  
Saying an algorithm has running time θ(n2) says that the order 
of growth of the running time is in the set of functions whose 
running time is n2, a quadratic function of n 
 

Asymptotic Analysis 

•  Names for classes of algorithms: 
 constant   θ(n0) = θ(1) 
 logarithmic    θ(lgn) 
 polylogarithmic  θ(lgkn), k ≥ 1 

 linear    θ(n) 
 linearithmic   θ(nlgn) 
 quadratic   θ(n2)  
 cubic    θ(n3) 
 polynomial   θ(nk), k ≥ 1 

 exponential   θ(an), a > 1 

Growth 
Rate

Increasing

Asymptotic Analysis 
Example:  As n grows larger, an algorithm with running time 
of order n2 will "eventually" run slower than one with running 
time of order n, which in turn will eventually run slower than 
one with running time of order (lgn). 
 
Asymptotic analysis in terms of "Big Oh", "Big Omega", and 
"Theta" are the classification schemes we will use to make 
these notions precise. 
 

Note:  Our conclusions will only be valid "in the limit" or 
"asymptotically".  That is, they may not hold true for small 
values of n. 

"Big Oh" - Upper Bounding Running Time 

Definition:  f(n) ∈ O(g(n)) if there exist constants c > 0 and 
n0 ≥ 1 such that 
 

   f(n) ≤ cg(n)   for all n ≥ n0. 
 
Intuition: 
•   f(n) ∈ O(g(n)) means f(n) is “of order at most”, or “less than or  
    equal to” g(n) when we ignore small values of n and constants 

•   some constant multiple of g(n) is an upper bound for f(n)  
   (for large enough n) 

Example: (lgn)2 is O(n) 

(lgn)2 ≤ n for all n0 ≥ 16, so (lgn)2 is O(n) 
(lgn)2 = lg2n 

f(n) = (lgn)2 

g(n) = n 
n0 = 16 

 Asymptotic notation and logarithms: 
 

logb n = log2 n  
      log2 b 

 
– changing base b changes only constant 

factor that can be ignored  
– When we say f(n) ∈ O(log n), the base of 

the log is unimportant (but it will usually  
be log2n, written as lgn). 
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"Big Omega" - Lower Bounding Running Time 

Definition:  f(n) ∈ Ω(g(n)) if there exist constants c > 0 and 
n0 ≥ 1 such that 
 

  f(n) ≥ cg(n)    for all   n ≥ n0. 
 
Intuition: 
•   f(n) ∈ Ω(g(n)) means f(n) is “of order at least” or “greater than or 
    equal to” g(n) when we ignore small values of n. 
 
•   some constant multiple of g(n) is a lower bound  for f(n)  
   (for large enough n). 

"Theta" - Tightly Bounding Running Time 

Definition:  f(n) ∈ θ(g(n)) if there exist constants c1, c2 > 0 
and n0 ≥ 1 such that 
 

 c1g(n) ≤  f(n) ≤ c2g(n)   for all n ≥ n0. 
 
Intuition: 
•   f(n) ∈ θ(g(n)) means f(n) is “of the same order as”, or  “equal to”  
   g(n) when we ignore small values of n.   

 
Useful way to show "Theta" relationships: 
q  Show both a "Big Oh" and "Big Omega" relationship. 

Asymptotic Analysis 

•  Classifying algorithms is generally done in terms of 
worst-case running time Big Oh or Theta.  We rarely 
express the running time in terms of Big Omega.  If f(n) 
∈ O(g(n)) and f(n) ∈ Ω(g(n)), then f(n) ∈ Θ(g(n)) : 

 

–  O (f(n)): Big Oh--asymptotic upper bound. 
–  Ω (f(n)): Big Omega--asymptotic lower bound 

–  Θ (f(n)): Theta--asymptotic tight bound 

Little Oh 

"Little Oh" notation is used to denote strict upper bounds, 
(Big-Oh bounds are not necessarily strict inequalities). 
 
Definition:  f(n) ∈ o(g(n)) if for every c > 0, there exists 
some n0 ≥ 1 such that for all n ≥ n0, f(n) < cg(n). 
 

Intuition: 
•  f(n) ∈ o(g(n))  means f(n) is "strictly less than" any constant multiple  
  of g(n) when we ignore small values of n 
 
•  f(n) is trapped below any constant multiple of g(n) for large enough n 
 
 
•  For example, if f(n) ∈ O(n), then f(n) ∈ o(n2) 

Little Omega 

"Little Omega" notation is used to denote strict lower 
bounds (Ω bounds are not necessarily strict inequalities). 
 
Definition:  f(n) ∈ ω(g(n)) if for every c > 0, there exists 
some n0 ≥ 1 such that for all n ≥ n0, f(n) > cg(n). 
 

Intuition: 
•  f(n) ∈ ω(g(n))  means f(n) is "strictly greater than" any constant  
  multiple of g(n) when we ignore small values of n 
 
•  f(n) is trapped above any constant multiple of g(n) for large enough n 

Using Limits to Compare Orders of Growth 

Showing "Little Oh and Little Omega" relationships: 
 
           lim  f(n) / g(n) = 0       implies that f(n) has a smaller  

 n→∞           order of growth than g(n) 
 
              lim  f(n) / g(n) = c > 0  implies that f(n) has the same 

  n→∞             order of growth as g(n) (c is constant) 
 

  lim  f(n) / g(n) = ∞      implies that f(n) has a larger 
  n→∞             order of growth than g(n) 
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Little Oh and Little Omega 

Showing "Little Oh and Little Omega" relationships: 
 
 

 f(n)  ∈  o(g(n))     iff   lim  f(n) / g(n) = 0 
          n→∞ 
   
 f(n)  ∈  ω(g(n))     iff   lim f(n) / g(n) = ∞ 
           n→∞ 

 
          Showing Theta relationships 

  
 f(n)  ∈  Θ(g(n))     iff   lim f(n) / g(n) = c > 0 
           n→∞ 

 

Basic asymptotic efficiency classes 
Class Name Comments 

1 Constant Algorithm ignores input  
(i.e., can’t even scan input) 

lgn Logarithmic Cuts problem size by constant fraction on each 
iteration 

n Linear Algorithm scans its input (at least) 

nlgn Linearithmic Some divide and conquer; best sorting time. 

n2 Quadratic Loop inside loop = “nested loop” 

n3 Cubic Loop inside nested loop 

2n Exponential Algorithm generates all subsets of  
 n-element set 

n! Factorial Algorithm generates all permutations of  
 n-element set 


