
2/7/19

1

Analyzing Recursive Algorithms (Ch. 4) 

A recursive algorithm can often be described by a recurrence 
equation that describes the overall runtime on a problem of 
size n in terms of the runtime on smaller inputs. 
 
For divide-and-conquer algorithms, we get recurrences like: 

  
 T(n) =  

θ(1)     if n ≤ c 
aT(n/b) + D(n) + C(n)  otherwise 

•   a  = number of subproblems we divide the problem into 
•   n/b  = size of the subproblems (in terms of n) 
•   D(n)  = time to divide the size n problem into subproblems 
•   C(n)  = time to combine the subproblem solutions to get the      

    answer for the problem of size n 

where 

Review of Logarithms  
A logarithm is an inverse exponential function.  Saying bx = y is
equivalent to saying logby = x.

•     properties of logarithms: 
logb(xy) = logbx + logby 
logb (x/y) = logbx - logby 
logbxa = alogbx 
logba= logxa/logxb   (reason log base doesn't matter, asymp)  
a = blog

b
a    (e.g., n = 2lgn  = nlg2)  

lgkn = (lgn)k  

lglg(n) = lg(lgn)  

Solving Recurrences 
We will use the following methods to solve recurrences 

1.  Backward Substitution: involves substitution and expansion until 
seeing a pattern, converting result to a summation. 
 

2.  Apply the "Master Theorem":  If the recurrence has the form 
    T(n) = aT(n/b) + f(n) 
 then there are 2 formulae that can (often) be applied; one of these is 
given in § 4-3. 

 
Recurrence trees can be used along with backward substitution to guess 
the running time of a recurrence relation.  Most recurrences of the form 
shown above will be solved using the Master Theorem. 

 

To make the solutions simpler, we will  

•  assume base cases are constant, i.e., T(n) = θ(1) for n small enough. 

Analyzing Recursive Algorithms 

For recursive algorithms such as computing the factorial of n, 
we get an expression like the following: 

  
 T(n) =  1                    if n = 0 

T(n-1) + D(n) +  C(n)  otherwise 

 
•   n-1  = size of the subproblems (in terms of n) 
•   D(n)  = time to divide the size n problem into subproblems  
•   C(n)  = time to combine the subproblem solutions to get the      

    answer for the problem of size n  

where 

Solving recurrence with backward substitution 

Algorithm F(n) 
  Input:  a positive integer n 
  Output: n! 
1.   if n=0 
2.       return 1 
3.   else 
4.       return F(n-1) * n 

T(n) = T(n-1) + 1 
T(0) = 0 
 
 
 

T(n) = T(n-1) + 1       subst T(n-1) = T(n-2) + 1
= [T(n-2) + 1] + 1 = T(n-2) + 2   

       subst T(n-2) = T(n-3) + 1
=[T(n-3) + 1] + 2 = T(n-3) + 3
…
=T(n-i) + i = 
… 
= T(n-n) + n = T(0) + n = 0 + n = O(n)

Therefore, this algorithm has linear running 
time.

We solved this recurrence (ie, found an expression of the 
running time T(n) that is not given in terms of itself) 
using a method known as backward substitution. 

Solving Recurrences:  Backward Substitution 

  Example:  T(n) = 2T(n/2) + n   
 
T(n)  =  2T(n/2) + n 

 =  2[2T(n/4) + n/2] + n  /* expand  T(n/2) */ 
 =  4T(n/4) + n + n   /* simplify */ 
 =  4[2T(n/8) + n/4] + n + n  /* expand  T(n/4) */  
 =  8T(n/8) + n + n + n  /* simplify…see a pattern? */
           
  . . .  continue until T(n/n) = T(1) is reached 

 
 =  2lgnT(n/2lgn) + . . . + n + n + n   /* after lgn iterations */  

            =  2lgnT(1) + . . . + n + n + n         /* 2lgn = nlg2 = n */                                       
 =  c2lgn + nlgn         

 
 =  cn + nlgn            
 =  O(nlgn)    
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Recursion Tree for T(n) = 2T(n/2) + n 

c if  n = 1
2T(n/2) + cn otherwise

T(n) =

cn           cn

cn/2 cn/2 cn

cn/4 cncn/4cn/4cn/4

c c c c c c cc cn

cnlgn + cn

lgn + 1 levels
   (h = lgn)

Solving Recurrences:  Backward Substitution 

  Example:  T(n) = 2T(n/2) + 4n   
 
T(n)  =  2T(n/2) + 4n 

 =  2[2T(n/4) + 4(n/2)] + 4n     /* expand  T(n/2) */ 
 =  4T(n/4) + 8n/2 + 4n     /* simplify */ 
 =  4T(n/4) + 4n + 4n 
 =  4[2T(n/8) + 4(n/4)] + 4n + 4n /* expand  T(n/4) */  
 =  8T(n/8) + 16n/4 + 4n + 4n    /* simplify…see a pattern? */ 
 =  8T(n/8) + 4n + 4n + 4n        
 . . .  continue until T(n/n) = T(1) is reached 
 =  2lgnT(n/2lgn) + . . . + 4n + 4n + 4n   /* after lgn iterations */
 =  nT(1) + lgn(4n)             /* 2lgn = nlg2 = n */
                                                           
 =  cn + 4nlgn            
           
 =  O(nlgn)    

Solving Recurrences:  Backward Substitution 

  Example:  T(n) = 4T(n/2) + n 
 
T(n)  =  4T(n/2) + n 

 =  4[4T(n/4) + n/2] + n   /* expand T(n/2) */ 
 =  16T(n/4) + 4n/2 + n   /* simplify */ 
 =  16[4T(n/8) + n/4] + 2n + n  /* expand T(n/4) */ 
 =  64T(n/8) + 16n/4 + 2n + n  /* simplify */ 
 =  64T(n/8) + 4n + 2n + n  
   . . .  continue until T(n/n) = T(1) is reached 
 =  4lgnT(n/2lgn) + . . . + 4n + 2n + n    /* after lgn iterations */ 

 
 =  c4lgn + n                             /* convert to summation */ 
                     /* p. 1147 */ 
 =  cnlg4 + n (2lgn - 1)          /* 4lgn = nlg4 = n2 */ 
 =  cn2 + n(n - 1)          /* 2lgn = nlg2 = n */ 
 =  O(n2)   € 

2k
k= 0

lgn−1

∑ = 20 + 21 + ...+ 2lg n−1

Binary Search (iterative version) 
Algorithm Binary-Search(A[1…n], k) 
  Input:  a sorted array A of n comparable items and search key k 
  Output:  Index of array’s element that is equal to k or -1 if k not found 
1.   l = 1; r =n  
2.   while l <= r   
3.       m = ⎣(l + r)/2⎦                      ; m is midpoint 
4.       if k = A[m]  return m             ; found k, return index of k
5.       else if k < A[m]   r = m – 1     ; k is in lower half  
6.       else    l = m + 1                     ; k is in upper half  
7.   return -1 

What is the running time of this algorithm for an input of size n?   
 
Are there best and worst case input instances?  
 
 

Binary Search (recursive version) 
Algorithm Binary-Search-Rec(A[1…n], k, l, r) 
  Input:  a sorted array A of n comparable items, search key k, leftmost  
             and rightmost index positions in A 
  Output:  Index of array’s element that is equal to k or -1 if k not found 
1.   if (l > r) return -1  
2.   else  
3.      m = ⎣(l + r)/2⎦                       ; m is midpoint 
4.      if k = A[m]    return m 
5.      else if k < A[m]  return Binary-Search-Rec(A, k, l, m-1) 
6.      else return  Binary-Search-Rec(A, k, m+1, r)   

 
What is the running time of this algorithm for an input of size n?    
 
 

Solving Recurrences:  Backward Substitution 

  Example:  T(n) = T(n/2) + 1 
 
T(n)  =  T(n/2) + 1 

 =  [T(n/4) + 1] + 1   /* expand T(n/2) */ 
 =  T(n/4) + 2    /* simplify */ 
 =  [T(n/8) + 1] + 2   /* expand T(n/4) */ 
 =  T(n/8) + 3    /* simplify */ 
 =  . . .     . . . 

 
 =  T(n/2lgn) + lgn     /* 2lgn = nlg2 = n */ 
 =  T(1) + lgn 
  
 =  c + lgn 

 
 =  O(lgn)            
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Solving Recurrences:  Master Method (§4.3) 
The master method provides a 'cookbook' method for solving 
recurrences of a certain form. 
 

Master Theorem:  Let a ≥ 1 and b > 1 be constants, let f(n) be a 
function, and let T(n) be defined on nonnegative integers as: 
  

T(n) = aT(n/b) + f(n) 

  
Then, T(n) can be bounded asymptotically as follows:  
 

1.  T(n) = θ(nlogba)  if f(n) = O(nlogba-ε) for some constant ε > 0 
2.  T(n) = θ(nlogbalgn)  if f(n) = θ(nlogba)  
3.  T(n) = θ(f(n))  if f(n) = Ω(nlogba+ε) for some constant ε > 0 

     

Where a is the number of subproblems, n/b is the size of each 
subproblem, and f(n) is the time to divide or combine data. 

Solving Recurrences:  Master Method 

Intuition:  Compare f(n) with θ(nlogba).

case 1:  f(n) is "polynomially smaller than" θ(nlogba)
case 2:  f(n) is "asymptotically equal to"      θ(nlogba)
case 3:  f(n) is "polynomially larger than"    θ(nlogba)

What is logba?  The number of times we divide a by b to reach O(1).

Solving Recurrences:  Master Method (§4.3) 
Master Theorem:  Let a ≥ 1 and b > 1 be constants, let f(n) be a 
function, and let T(n) be defined on nonnegative integers as: 
  

T(n) = aT(n/b) + f(n) 
Then, T(n) can be bounded asymptotically as follows:  
 

1.  T(n) = θ(nlogba)  if f(n) = O(nlogba-ε) for some constant ε > 0 
2.  T(n) = θ(nlogbalgn)  if f(n) = θ(nlogba)  
3.  T(n) = θf(n)  if f(n) = Ω(nlogba+ε) for some constant ε > 0 

     and if a(f(n/b))≤ c(f(n)) for some positive constant  
     c < 1 and all sufficiently large n. 
 
 Case 3 requires us to also show a(f(n/b))≤ c(f(n)), the “regularity” 
condition.   

 
 The regularity condition always holds whenever f(n) = nk and f(n) = 
Ω(nlogba+ε) , so we don’t need to check it when f(n) is a polynomial. 

Solving Recurrences:  Master Method (§4.3) 

These 3 cases do not cover all the possibilities for f(n). 
 
There is a gap between cases 1 and 2 when f(n) is smaller than nlogba, 
but not polynomially smaller. 
 
There is a gap between cases 2 and 3 when f(n) is larger than nlogba, but 
not polynomially larger. 
 
If the function falls into one of these 2 gaps, or if the regularity condition  
can’t be shown to hold, then the master method can’t be used to solve 
the recurrence. 

Solving Recurrences:  Master Method (§4.3) 

A more general version of Case 2 follows: 
 

 T(n) = θ(nlogbalgk+1n)        if      f(n) = θ(nlogbalgkn) for k ≥ 0 
 

 This case covers the gap between cases 2 and 3 in which f(n) is 
larger than nlogba by only a polylog factor.  We’ll see an example of 
this type of recurrence in class.   

Alternate Version of Master Method  
Master Theorem:  Let a ≥ 1, b > 1, k≥0 be constants, let p be a 
real number, and let T(n) be defined on nonnegative integers as: 
  

T(n) = aT(n/b) + θ(nklogPn) 

Then, T(n) can be bounded asymptotically as follows: 
 

1.  If a > bk ,  then T(n) = θ(nlogba) 
2.  If a = bk,   then ���

a) If  p > -1, then T(n) = θ(nlogba logp+1n) ���
b) If  p = -1, then T(n) = θ(nlogba loglogn) ���
c) If  p < -1, then T(n) = θ(nlogba ) 

3.  If a < bk,   then ���
a) If  p ≥ 0, then T(n) = θ(nk logpn) ���
b) If  p < 0, then T(n) = θ(nk) ���

Like the version of the master theorem in our book, this doesn't hold for cases in 
which a, b, or k are not in the correct range.   
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Solving Recurrences:  Master Method 

Example:  T(n) = 9T(n/3) + n

•  a = 9, b = 3, f(n) = n, nlogba  = nlog39 = n2

•  compare f(n) = n with n2 

n = O(n2 -ε)  (so f(n) is polynomially smaller than nlogba )
•  case 1 applies:  T(n) ∈ θ(n2)

•  a = 1, b = 2, f(n) = 1, nlogba  = nlog21 = n0 = 1
•  compare f(n) = 1 with 1 

1 = θ(n0)  (so f(n) is polynomially equal to nlogba )
•  case 2 applies:  T(n) ∈ θ(n0lgn) ∈ θ(lgn) 

Example:  T(n) = T(n/2) + 1

Solving Recurrences:  Alt. Master Method 

Example 1a:  T(n) = 9T(n/3) + n

•  a = 9, b = 3, k = 1, p = 0, log39 = 2
•  compare a = 9 with bk = 31 = 3

9 > 3 
•  case 1 applies:  T(n) ∈ θ(nlog39) ∈  θ(n2)  

•  a = 1, b = 2, k = 0, p = 0, and log21 = 0
•  compare a = 1 with bk = 20 = 1���

a = b0  because 1 = 1 
•  since p > −1, case 2(a) applies:  T(n) ∈ θ(nlog21lgn) = (n0lgp+1n) ���

= (lg1n) ∈  θ(lgn) 

Example 2a:  T(n) = T(n/2) + 1

Solving Recurrences:  Master Method 

 Example:  T(n) = T(n/2) + n2

•  a = 1, b = 2, f(n) = n2, nlogba  = nlog21 = n0 = 1
•  compare f(n) = n2 with 1 

 n2 = Ω(n0+ε)  (so f(n) is polynomially larger)
•  Since f(n) is a polynomial in n, case 3 holds, T(n) ∈  θ(n2) 

Example:  T(n) = 4T(n/2) + n2

•    a = 4, b = 2, f(n) = n2, nlogba  = nlog24 = n2 

•    compare f(n) = n2 with n2 

 n2 = θ(n2)  (so f(n) is polynomially equal)
•    Case 2 holds and T(n) ∈  θ(n2lgn) 

Solving Recurrences:  Alt. Master Method 

 Example:  T(n) = T(n/2) + n2

•  a = 1, b = 2, k = 2, p = 0, and nlog21=n0

•  compare a = 1 with b = 2k, where k = 2 

 1 < 4 
•  Since p ≥ 0, case 3a) applies and T(n) = θ(n2log0n) ∈  θ(n2) 

Example:  T(n) = 4T(n/2) + n2

•  a = 4, b = 2, k = 2, p = 0, and nlog24 = n2

•  compare a = 4 with bk = 22 = 4
 4 = 4

•  Since p > −1, case 2a) applies and T(n) = θ(nlog24log1n)  
∈  θ(n2logn) 

Solving Recurrences:  Master Method 

Example:  T(n) = 7T(n/2) + n2

Example:  T(n) = 7T(n/3) + n2

•    a = 7, b = 3, f(n) = n2, nlogba  = nlog37 = n1+ ε 

•    compare f(n) = n2 with n1+ ε 

 n2 = Ω(n1+ε)  (so f(n) is polynomially larger)
•    Since f(n) is a polynomial in n, case 3 holds and T(n) ∈ θ(n2) 

•    a = 7, b = 2, f(n) = n2, nlogba  = nlog27 = n2+ ε

•    compare f(n) = n2 with n2+ ε 

 n2 = O(n2+ε)  (so f(n) is polynomially smaller)
•    Case 1 holds and T(n) ∈ θ(nlog27) 

Solving Recurrences:  Alt. Master Method 

Example:  T(n) = 7T(n/2) + n2

Example:  T(n) = 7T(n/3) + n2

•    a = 7, b = 3, k=2, p = 0, and nlogba= nlog37 = n1+ε

•    compare a = 7 with bk = 32, 7 < 9
•    Since p ≥ 0, case 3a) holds and T(n) ∈ θ(n2log0n)  
     θ(n2) 

•    a = 7, b = 2, k = 2, p = 0,  nlogba  = nlog27 = n1+ε

•    compare a = 7 with bk = 22, a > b because 7 > 4 
•    Case 1 holds and T(n) ∈ θ(nlog27)  
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Checking an Upper Bound 
Give an upper bound on the recurrence:  T(n) = 2T(⎣n/2⎦) + n.
Show T(n) ≤ cnlgn for some c > 0.

Assume T(⎣n/2⎦) ≤ c ⎣n/2⎦ lg(⎣n/2⎦). ���

T(n) ≤ 2(c⎣n/2⎦lg(⎣n/2⎦)) + n
≤ cnlg(n/2) + n
= cnlgn - cnlg2 + n
= cnlgn - cn + n
≤ cnlgn      for c >= 1.

Mathematical induction on a good guess 
Suppose T(n) = 1  if  n = 2, and  T(n) = T(n/2) + θ(1)  if  n = 2k, ���
for k > 1.
Show T(n) = lgn by induction on the exponent k.

Basis:  When k = 1, n = 2.  T(2) = lg2 = 1.
IHOP:  Assume T(2k) = lg2k for some constant k >1. ���

Inductive step:  Show T(2k+1) = lg(2k+1) = k+1.
T(2k+1) = T(2k+1/2) + 1       /* by definition of T(n) */
              =    T(2k) + 1 

= (lg2k) + 1            /* by inductive hypothesis */
= k + 1                       /* lg2k = k */

Checking an Upper Bound Using Induction 
Suppose T(n) = 1  if  n = 1, and  T(n) = T(n-1) + θ(n)   for n > 1.
Show T(n) = O(n2) by induction.

Basis:  When n = 1.  T(1) = 12 =  1.
IHOP:  Assume T(i) = i2 for all i < k. ���

Inductive step:  Show T(k) = k2.
T(k) = T(k-1) + k             /* given */

= (k-1)2 + k            /* by inductive hypothesis */
= k2 - k + 1
≤ k2     for k > 1


