Analyzing Recursive Algorithms (Ch. 4)

A recursive algorithm can often be described by a recurrence
equation that describes the overall runtime on a problem of
size n in terms of the runtime on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

o) = { 6(1) ifnsc

aT(n/b) + D(n) + C(n) otherwise

where

e a = number of subproblems we divide the problem into

e n/b = size of the subproblems (in terms of n)

e D(n) = time to divide the size n problem into subproblems

e ((n) = time to combine the subproblem solutions to get the

answer for the problem of size n

Review of Logarithms

A logarithm is an inverse exponential function. Saying b* =y is
equivalent to saying log,y = x.

« properties of logarithms:
log,(xy) = logyx + log,y
log,, (x/y) = logyx - logpy
logpx? = alogpx
Iogba= |nga/|ngb (reason log base doesn't matter, asymp)
a=b3 (e.g,n=29"=n9?)
Igkn = (Ign)*
lglg(n) = Ig(ign)

Solving Recurrences
We will use the following methods to solve recurrences

1. Backward Substitution: involves substitution and expansion until
seeing a pattern, converting result to a summation.

2. Apply the "Master Theorem": If the recurrence has the form
T(n) = aT(n/b) + f(n)
then there are 2 formulae that can (often) be applied; one of these is
given in § 4-3.

Recurrence trees can be used along with backward substitution to guess
the running time of a recurrence relation. Most recurrences of the form
shown above will be solved using the Master Theorem.

To make the solutions simpler, we will

« assume base cases are constant, i.e., T(n) = 6(1) for n small enough.

Analyzing Recursive Algorithms

For recursive algorithms such as computing the factorial of n,
we get an expression like the following

)= { 1 ifn=0
T(n-1) + D(n) + C(n) otherwise

where

e n-1 = size of the subproblems (in terms of n)

* D(n) = time to divide the size n problem into subproblems

* C(n) = time to combine the subproblem solutions to get the
answer for the problem of size n

Solving recurrence with backward substitution

Algorithm F(n) Tm)=T@m-1)+1 substT(n-1)=T(n-2) + |
Input: a positive integer n =[T(-2) + 1]+ 1 =T(n-2) + 2
Output: n! subst T(n-2) = T(n-3) + 1|
1. ifn=0 =[T(n-3) + 1]+ 2 =T(n-3) + 3
2 return 1
3 else =T(n-i) +i=
4. return F(n-1) *n =T(an) +n=T(0) +n=0+n=0)

T(n)=T(n-1) +1 Therefore, this algorithm has linear running
T(0)=0 time.

We solved this recurrence (ie, found an expression of the
running time T(n) that is not given in terms of itself)
using a method known as backward substitution.

Solving Recurrences: Backward Substitution

Example: T(n) = 2T(n/2) + n
T(n) 2T(n/2) + n
2[2T(n/4) + n/2] +n /* expand T(n/2) */
4T(n/4)+n+n /* simplify */
4[2T(n/8) + n/4] + n+n /* expand T(n/4) */
8T(n/8)+n+n+n /* simplify...see a pattern? */

. continue until T(n/n) = T(1) is reached

29T(n/2lm) + ...+ n+n+n /*after Ign iterations */
29T(1) +...+n+n+n /X2 =% = n¥
c2'9" + nign

cn + nign
= O(nign)

2/7/19

Recursion Tree for T(n) = 2T(n/2) + n

cn cn

cn/2 cnj2 = cn

Ign + 1 levels / \

(h =1gn) cnl4 /cn/< /cn< 71/4\ —> cn

‘ c c ¢ c c c c c > cn
cnlgn + cn

T(n) = {C fn=1
2T(n/2) + cn otherwise

Solving Recurrences: Backward Substitution

Example: T(n) = 2T(n/2) + 4n

T(n) 2T(n/2) + 4n

2[2T(n/4) + 4(n/2)] + 4n /* expand T(n/2) */
4T(n/4) + 8n/2 + 4n /* simplify */

4T(n/4) + 4n + 4n

4[2T(n/8) + 4(n/4)] + 4n + 4n /* expand T(n/4) */
8T(n/8) + 16n/4 + 4n + 4n /* simplify...see a pattern? */
8T(n/8) + 4n + 4n + 4n
. continue until T(n/n) = T(1) is reached

29"T(n/2'9n) + ... +4n + 4n + 4n /* after Ign iterations */
nT(1) + Ign(4n) [% 29" = n'% = n ¥/

cn + 4nign

= O(nign)

Solving Recurrences: Backward Substitution

Example: T(n) = 4T(n/2) + n

T(n) = 4T(n/2)+n
= 4[4T(n/4) + n/2] +n /* expand T(n/2) */
= 16T(n/4) +4n/2 +n /* simplify */
= 16[4T(n/8) + n/4]+ 2n +n /* expand T(n/4) */
= 64T(n/8) + 16n/4 + 2n + n /* simplify */

64T(n/8) + 4n + 2n + n
. continue until T(n/n) = T(1) is reached
49"T(n/29") + ... +4n +2n +n /* after |gn iterations */

lgn-1

c49" +n 22* =2°+2'+..+2%" /* convert to summation */
i [%p. 1147 %

% +n (2|gr\ -1) /¥ 4lon = ot = 2 */

cn? +n(n-1) /% 2lon = ple2 = p */

o)

Binary Search (iterative version)

Algorithm Binary-Search(A[1...n], k)
Input: a sorted array A of n comparable items and search key k
Output: Index of array’s element that is equal to k or -1 if k not found

1. I=1;r=n

2. whilel<=r

3. m = [(I+r)/2]

; m is midpoint

4, if k = Alm] return m ; found k, return index of k
5. elseifk <Alm] r=m-1 ;kisinlower half

6. else I=m+1 ; k is in upper half

7. return -1

What is the running time of this algorithm for an input of size n?

Are there best and worst case input instances?

Binary Search (recursive version)

Algorithm Binary-Search-Rec(A[1...n], k, |, r)
Input: a sorted array A of n comparable items, search key k, leftmost
and rightmost index positions in A
Output: Index of array’s element that is equal to k or -1 if k not found
1. if (I > r) return -1
2. else
3. m=|(l+r)/2] ; m is midpoint
4. ifk=A[m] returnm
5 else if k < Alm] return Binary-Search-Rec(A, k, |, m-1)
6. else return Binary-Search-Rec(A, k, m+1, r)

What is the running time of this algorithm for an input of size n?

Solving Recurrences: Backward Substitution

Example: T(n) =T(n/2) +1

T(n) = T(n/2)+1
= [T(n/4)+1]1+1 /* expand T(n/2) */
= T(n/4)+2 /* simplify */
= [T(n/8)+ 1]+ 2 /* expand T(n/4) */

T(n/8) +3 /* simplify */

T(n/2'9") + Ign /%29 = 92 = g x/

T(1) + Ign

c+lgn

= 0O(lgn)

2/7/19

Solving Recurrences: Master Method (§4.3)

The master method provides a 'cookbook' method for solving
recurrences of a certain form.

Master Theorem: Leta > 1and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + f(n)

Where a is the number of subproblems, n/b is the size of each
subproblem, and f(n) is the time to divide or combine data.
Then, T(n) can be bounded asymptotically as follows:
1. T(n) = O(n°%%) if f(n) = O(n"%**) for some constant ¢ > 0
2. T(n) = B(n°%®Ign) if f(n) = B(n°%?)
3. T(n) = 6(f(n)) if f(n) = Q(n'°%***) for some constant ¢ > 0

Solving Recurrences: Master Method

Intuition: Compare f(n) with O(n'*%*).

case 1: fn) is "polynomially smaller than" O(n'*%%)
case 2: fin) is "asymptotically equal to” B(n'**™")
case 3: f(n) is "polynomially larger than")

What is logga? The number of times we divide a by b to reach O(1).

Solving Recurrences: Master Method (§4.3)

Master Theorem: Leta > 1and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:
T(n) = aT(n/b) + f(n)
Then, T(n) can be bounded asymptotically as follows:
1. T(n) = (M%) if f(n) = O(n"°%**) for some constant ¢ > 0
2. T(n) = O(n%?Ign) if f(n) = B(n'%?)
3. T(n) = 6f(n) if f(n) = Q(n'°%***) for some constant ¢ > 0

and if a(f(n/b))< c(f(n)) for some positive constant
c < 1 and all sufficiently large n.

Case 3 requires us to also show a(f(n/b))< c(f(n)), the “regularity”
condition.

The regularity condition a/ways holds whenever f(n) = nk and f(n) =
Q(n"°%***) , so we don't need to check it when f(n) is a polynomial.

Solving Recurrences: Master Method (§4.3)

These 3 cases do not cover all the possibilities for f(n).

There is a gap between cases 1 and 2 when f(n) is smaller than nlogea,
but not polynomially smaller.

There is a gap between cases 2 and 3 when f(n) is larger than n'%%=, but
not polynomially larger.

If the function falls into one of these 2 gaps, or if the regularity condition
can't be shown to hold, then the master method can’t be used to solve
the recurrence.

Solving Recurrences: Master Method (§4.3)

A more general version of Case 2 follows:
T(n) = B(NIgk+tn) - if f(n) = B(n"*%Igkn) for k = 0
This case covers the gap between cases 2 and 3 in which f(n) is

larger than n®®? by only a polylog factor. We'll see an example of
this type of recurrence in class.

Alternate Version of Master Method

Master Theorem: Leta 21, b > 1, k>0 be constants, let p be a
real number, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + O(n*logtn)

Then, T(n) can be bounded asymptotically as follows:
1. Ifa>bk, then T(n) = 6(n'%?
2. Ifa=>bk, then

a)If p>-1,then T(n)=6(n'%"log"'n)

b)If p=-1,then T(n) = B(n'*"loglogn)

¢)If p<-1,then T(n)=H(n'"®")
3. Ifa<bk, then

a)If p=0,then T(n) = 6(n*log’n)

b)If p<0,then T(n)=H(n")

Like the version of the master theorem in our book, this doesn't hold for cases in
which a, b, or k are not in the correct range.

2/7/19

Solving Recurrences: Master Method

Example: T(n) = 9T(n/3) + n
e a=9,b=3,f(n)=n,n"%" =%’ =p2
e compare f(n) = n with n?
n=0(n?*) (so f(n) is polynomially smaller than n
e case | applies: T(n) € e(nz)

logpa)

Example: T(n) = T(n/2) + 1

e a=1,b=2,f(n)=1,n"®" =n2'=pn0=1
e compare f(n) = 1 with 1

1=0(n° (so f(n) is polynomially equal to n
o case 2 applies: T(n) € B(n’Ign) € O(Ign)

logpa)

Solving Recurrences: Alt. Master Method

Example la: T(n) = 9T(n/3) + n

e a=9,b=3,k=1,p=0,log;9=2
¢ compare a=9 with b*=3'=3
9>3
« case 1 applies: T(n) € O("*’) € O(n*)

Example 2a: T(n) = T(n/2) + 1

e a=1,b=2,k=0,p=0,andlog,1 =0

compare a = 1 with bk=20=1

a=b" because 1 =1

« since p > —1, case 2(a) applies: T(n) € O(n"*2'1gn) = (n°lgP*'n)
=(lg'n) € B(lgn)

Solving Recurrences: Master Method

Example: T(n) = T(n/2) + n?
e a=1,b=2,f(n)=n?,n"®" =n"2'=n0=1
e compare f(n) = n? with 1
n? = Q(n%*) (so f(n) is polynomially larger)
e Since f(n) is a polynomial in n, case 3 holds, T(n) € 6(n?)

Example: T(n) = 4T(n/2) + n?
e a=4,b=2,1f(n)=n2n"® == p2
¢ compare f(n) = n? with n?
n2=0(n?) (so f(n)is polynomially equal)
e Case 2 holds and T(n) € 6(n2lgn)

Solving Recurrences: Alt. Master Method

Example: T(n) = T(n/2) + n?

e a=1,b=2,k=2,p=0,and n"2'=n°
* compare a = 1 with b =2 where k =2
1<4
e Since p = 0, case 3a) applies and T(n) = 6(n’log’n) € 8(n?)

Example: T(n) = 4T(n/2) + n?

* a=4,b=2,k=2,p=0,and n*2* = n2

e compare a =4 with bk=22=4
4=4

« Since p > —1, case 2a) applies and T(n) = 6(n**2*log'n)
€ 0(n%logn)

Solving Recurrences: Master Method

Example: T(n) = 7T(n/3) + n?
e a=7,b=3,f(n)=n2n"®" =n'% = pl+e
¢ compare f(n) = n?> with n'*¢
n? = Q(n'*¥) (so f(n) is polynomially larger)

¢ Since f(n) is a polynomial in n, case 3 holds and T(n) € 6(n?)

Example: T(n) = 7T(n/2) + n?

e a=7,b=2,f(n)=n?, 0" == p2re
¢ compare f(n) = n? with n2*¢

n2 = O(n2*) (so f(n) is polynomially smaller)
« Case 1 holds and T(n) € 6(n"**?’)

Solving Recurrences: Alt. Master Method

Example: T(n) = 7T(n/3) + n?
e a=7,b=3,k=2,p=0,and n®'= "%’ = n'**
¢ compare a =7 with b*=32,7<9
¢ Since p = 0, case 3a) holds and T(n) € 6(n?log’n)
0(n?)

Example: T(n) = 7T(n/2) + n?
e a=7,b=2,k=2,p=0, n"®" =% =p"*

e compare a =7 with b* =22, a > b because 7 > 4
« Case 1 holds and T(n) € 6(n'%")

2/7/19

Checking an Upper Bound

Give an upper bound on the recurrence: T(n) = 2T([n/2]) + n.
Show T(n) < cnlgn for some ¢ > 0.

Assume T(|n/2]) < ¢ [n/2] 1g([n/2)).
T(n) 2(c|n/2]1g([n/2))) + n

cnlg(n/2) +n

cnlgn - cnlg2 + n

cnlgn - cn+n

cnlgn forc>=1.

IIA A

A1l

Mathematical induction on a good guess

Suppose T(n) = 1 if n=2,and T(n) = T(n/2) + 6(1) if n= 2%
fork>1.
Show T(n) = Ign by induction on the exponent k.

Basis: Whenk=1,n=2. T(2)=1g2=1.
IHOP: Assume T(2¥) = 1g2* for some constant k >1.

Inductive step: Show T(2K1) =1g(2K+1) = k+1.
TR = TRK1/2) + 1 /* by definition of T(n) */

= TQ%+1
= (Ig29+1 /* by inductive hypothesis */
= k+1 [1g2k =k #/

Checking an Upper Bound Using Induction

Suppose T(n) =1 if n=1,and T(n) = T(n-1) + 6(n) forn> 1.

Show T(n) = O(n?) by induction.
Basis: Whenn=1. T(1)=12= 1.
IHOP: Assume T(i) =i for all i < k.

Inductive step: Show T(k) = k2.

Tk) = Tk-1)+k /% given ¥/
= (k-1?+k /* by inductive hypothesis */
= k*-k+1
< k» fork>1

2/7/19

