
2/7/19

1

Analyzing Recursive Algorithms (Ch. 4)

A recursive algorithm can often be described by a recurrence
equation that describes the overall runtime on a problem of
size n in terms of the runtime on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

 T(n) =

θ(1) if n ≤ c
aT(n/b) + D(n) + C(n) otherwise

•  a = number of subproblems we divide the problem into
•  n/b = size of the subproblems (in terms of n)
•  D(n) = time to divide the size n problem into subproblems
•  C(n) = time to combine the subproblem solutions to get the

 answer for the problem of size n

where

Review of Logarithms
A logarithm is an inverse exponential function. Saying bx = y is
equivalent to saying logby = x.

•  properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba= logxa/logxb (reason log base doesn't matter, asymp)
a = blog

b
a (e.g., n = 2lgn = nlg2)

lgkn = (lgn)k

lglg(n) = lg(lgn)

Solving Recurrences
We will use the following methods to solve recurrences

1.  Backward Substitution: involves substitution and expansion until
seeing a pattern, converting result to a summation.

2.  Apply the "Master Theorem": If the recurrence has the form
 T(n) = aT(n/b) + f(n)
 then there are 2 formulae that can (often) be applied; one of these is
given in § 4-3.

Recurrence trees can be used along with backward substitution to guess
the running time of a recurrence relation. Most recurrences of the form
shown above will be solved using the Master Theorem.

To make the solutions simpler, we will

•  assume base cases are constant, i.e., T(n) = θ(1) for n small enough.

Analyzing Recursive Algorithms

For recursive algorithms such as computing the factorial of n,
we get an expression like the following:

 T(n) = 1  if n = 0

T(n-1) + D(n) + C(n) otherwise

•  n-1 = size of the subproblems (in terms of n)
•  D(n) = time to divide the size n problem into subproblems
•  C(n) = time to combine the subproblem solutions to get the

 answer for the problem of size n

where

Solving recurrence with backward substitution

Algorithm F(n)
 Input: a positive integer n
 Output: n!
1.  if n=0
2.  return 1
3.  else
4.  return F(n-1) * n

T(n) = T(n-1) + 1
T(0) = 0

T(n) = T(n-1) + 1 subst T(n-1) = T(n-2) + 1
= [T(n-2) + 1] + 1 = T(n-2) + 2

 subst T(n-2) = T(n-3) + 1
=[T(n-3) + 1] + 2 = T(n-3) + 3
…
=T(n-i) + i =
…
= T(n-n) + n = T(0) + n = 0 + n = O(n)

Therefore, this algorithm has linear running
time.

We solved this recurrence (ie, found an expression of the
running time T(n) that is not given in terms of itself)
using a method known as backward substitution.

Solving Recurrences: Backward Substitution

 Example: T(n) = 2T(n/2) + n

T(n) = 2T(n/2) + n

 = 2[2T(n/4) + n/2] + n /* expand T(n/2) */
 = 4T(n/4) + n + n /* simplify */
 = 4[2T(n/8) + n/4] + n + n /* expand T(n/4) */
 = 8T(n/8) + n + n + n /* simplify…see a pattern? */

 . . . continue until T(n/n) = T(1) is reached

 = 2lgnT(n/2lgn) + . . . + n + n + n /* after lgn iterations */

 = 2lgnT(1) + . . . + n + n + n /* 2lgn = nlg2 = n */
 = c2lgn + nlgn

 = cn + nlgn
 = O(nlgn)

2/7/19

2

Recursion Tree for T(n) = 2T(n/2) + n

c if n = 1
2T(n/2) + cn otherwise

T(n) =

cn cn

cn/2 cn/2 cn

cn/4 cncn/4cn/4cn/4

c c c c c c cc cn

cnlgn + cn

lgn + 1 levels
 (h = lgn)

Solving Recurrences: Backward Substitution

 Example: T(n) = 2T(n/2) + 4n

T(n) = 2T(n/2) + 4n

 = 2[2T(n/4) + 4(n/2)] + 4n /* expand T(n/2) */
 = 4T(n/4) + 8n/2 + 4n /* simplify */
 = 4T(n/4) + 4n + 4n
 = 4[2T(n/8) + 4(n/4)] + 4n + 4n /* expand T(n/4) */
 = 8T(n/8) + 16n/4 + 4n + 4n /* simplify…see a pattern? */
 = 8T(n/8) + 4n + 4n + 4n
 . . . continue until T(n/n) = T(1) is reached
 = 2lgnT(n/2lgn) + . . . + 4n + 4n + 4n /* after lgn iterations */
 = nT(1) + lgn(4n) /* 2lgn = nlg2 = n */

 = cn + 4nlgn

 = O(nlgn)

Solving Recurrences: Backward Substitution

 Example: T(n) = 4T(n/2) + n

T(n) = 4T(n/2) + n

 = 4[4T(n/4) + n/2] + n /* expand T(n/2) */
 = 16T(n/4) + 4n/2 + n /* simplify */
 = 16[4T(n/8) + n/4] + 2n + n /* expand T(n/4) */
 = 64T(n/8) + 16n/4 + 2n + n /* simplify */
 = 64T(n/8) + 4n + 2n + n
 . . . continue until T(n/n) = T(1) is reached
 = 4lgnT(n/2lgn) + . . . + 4n + 2n + n /* after lgn iterations */

 = c4lgn + n /* convert to summation */
 /* p. 1147 */
 = cnlg4 + n (2lgn - 1) /* 4lgn = nlg4 = n2 */
 = cn2 + n(n - 1) /* 2lgn = nlg2 = n */
 = O(n2) €

2k
k= 0

lgn−1

∑ = 20 + 21 + ...+ 2lg n−1

Binary Search (iterative version)
Algorithm Binary-Search(A[1…n], k)
 Input: a sorted array A of n comparable items and search key k
 Output: Index of array’s element that is equal to k or -1 if k not found
1.  l = 1; r =n
2.  while l <= r
3.  m = ⎣(l + r)/2⎦ ; m is midpoint
4.  if k = A[m] return m ; found k, return index of k
5.  else if k < A[m] r = m – 1 ; k is in lower half
6.  else l = m + 1 ; k is in upper half
7.  return -1

What is the running time of this algorithm for an input of size n?

Are there best and worst case input instances?

Binary Search (recursive version)
Algorithm Binary-Search-Rec(A[1…n], k, l, r)
 Input: a sorted array A of n comparable items, search key k, leftmost
 and rightmost index positions in A
 Output: Index of array’s element that is equal to k or -1 if k not found
1.  if (l > r) return -1
2.  else
3.  m = ⎣(l + r)/2⎦ ; m is midpoint
4.  if k = A[m] return m
5.  else if k < A[m] return Binary-Search-Rec(A, k, l, m-1)
6.  else return Binary-Search-Rec(A, k, m+1, r)

What is the running time of this algorithm for an input of size n?

Solving Recurrences: Backward Substitution

 Example: T(n) = T(n/2) + 1

T(n) = T(n/2) + 1

 = [T(n/4) + 1] + 1 /* expand T(n/2) */
 = T(n/4) + 2 /* simplify */
 = [T(n/8) + 1] + 2 /* expand T(n/4) */
 = T(n/8) + 3 /* simplify */
 =

 = T(n/2lgn) + lgn /* 2lgn = nlg2 = n */
 = T(1) + lgn

 = c + lgn

 = O(lgn)

2/7/19

3

Solving Recurrences: Master Method (§4.3)
The master method provides a 'cookbook' method for solving
recurrences of a certain form.

Master Theorem: Let a ≥ 1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + f(n)

Then, T(n) can be bounded asymptotically as follows:

1.  T(n) = θ(nlogba) if f(n) = O(nlogba-ε) for some constant ε > 0
2.  T(n) = θ(nlogbalgn) if f(n) = θ(nlogba)
3.  T(n) = θ(f(n)) if f(n) = Ω(nlogba+ε) for some constant ε > 0

Where a is the number of subproblems, n/b is the size of each
subproblem, and f(n) is the time to divide or combine data.

Solving Recurrences: Master Method

Intuition: Compare f(n) with θ(nlogba).

case 1: f(n) is "polynomially smaller than" θ(nlogba)
case 2: f(n) is "asymptotically equal to" θ(nlogba)
case 3: f(n) is "polynomially larger than" θ(nlogba)

What is logba? The number of times we divide a by b to reach O(1).

Solving Recurrences: Master Method (§4.3)
Master Theorem: Let a ≥ 1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + f(n)
Then, T(n) can be bounded asymptotically as follows:

1.  T(n) = θ(nlogba) if f(n) = O(nlogba-ε) for some constant ε > 0
2.  T(n) = θ(nlogbalgn) if f(n) = θ(nlogba)
3.  T(n) = θf(n) if f(n) = Ω(nlogba+ε) for some constant ε > 0

 and if a(f(n/b))≤ c(f(n)) for some positive constant
 c < 1 and all sufficiently large n.

 Case 3 requires us to also show a(f(n/b))≤ c(f(n)), the “regularity”
condition.

 The regularity condition always holds whenever f(n) = nk and f(n) =
Ω(nlogba+ε) , so we don’t need to check it when f(n) is a polynomial.

Solving Recurrences: Master Method (§4.3)

These 3 cases do not cover all the possibilities for f(n).

There is a gap between cases 1 and 2 when f(n) is smaller than nlogba,
but not polynomially smaller.

There is a gap between cases 2 and 3 when f(n) is larger than nlogba, but
not polynomially larger.

If the function falls into one of these 2 gaps, or if the regularity condition
can’t be shown to hold, then the master method can’t be used to solve
the recurrence.

Solving Recurrences: Master Method (§4.3)

A more general version of Case 2 follows:

 T(n) = θ(nlogbalgk+1n) if f(n) = θ(nlogbalgkn) for k ≥ 0

 This case covers the gap between cases 2 and 3 in which f(n) is
larger than nlogba by only a polylog factor. We’ll see an example of
this type of recurrence in class.

Alternate Version of Master Method
Master Theorem: Let a ≥ 1, b > 1, k≥0 be constants, let p be a
real number, and let T(n) be defined on nonnegative integers as:

T(n) = aT(n/b) + θ(nklogPn)

Then, T(n) can be bounded asymptotically as follows:

1.  If a > bk , then T(n) = θ(nlogba)
2.  If a = bk, then ���

a) If p > -1, then T(n) = θ(nlogba logp+1n) ���
b) If p = -1, then T(n) = θ(nlogba loglogn) ���
c) If p < -1, then T(n) = θ(nlogba)

3.  If a < bk, then ���
a) If p ≥ 0, then T(n) = θ(nk logpn) ���
b) If p < 0, then T(n) = θ(nk) ���

Like the version of the master theorem in our book, this doesn't hold for cases in
which a, b, or k are not in the correct range.

2/7/19

4

Solving Recurrences: Master Method

Example: T(n) = 9T(n/3) + n

•  a = 9, b = 3, f(n) = n, nlogba = nlog39 = n2

•  compare f(n) = n with n2

n = O(n2 -ε) (so f(n) is polynomially smaller than nlogba)
•  case 1 applies: T(n) ∈ θ(n2)

•  a = 1, b = 2, f(n) = 1, nlogba = nlog21 = n0 = 1
•  compare f(n) = 1 with 1

1 = θ(n0) (so f(n) is polynomially equal to nlogba)
•  case 2 applies: T(n) ∈ θ(n0lgn) ∈ θ(lgn)

Example: T(n) = T(n/2) + 1

Solving Recurrences: Alt. Master Method

Example 1a: T(n) = 9T(n/3) + n

•  a = 9, b = 3, k = 1, p = 0, log39 = 2
•  compare a = 9 with bk = 31 = 3

9 > 3
•  case 1 applies: T(n) ∈ θ(nlog39) ∈ θ(n2)

•  a = 1, b = 2, k = 0, p = 0, and log21 = 0
•  compare a = 1 with bk = 20 = 1���

a = b0 because 1 = 1
•  since p > −1, case 2(a) applies: T(n) ∈ θ(nlog21lgn) = (n0lgp+1n) ���

= (lg1n) ∈ θ(lgn)

Example 2a: T(n) = T(n/2) + 1

Solving Recurrences: Master Method

 Example: T(n) = T(n/2) + n2

•  a = 1, b = 2, f(n) = n2, nlogba = nlog21 = n0 = 1
•  compare f(n) = n2 with 1

 n2 = Ω(n0+ε) (so f(n) is polynomially larger)
•  Since f(n) is a polynomial in n, case 3 holds, T(n) ∈ θ(n2)

Example: T(n) = 4T(n/2) + n2

•  a = 4, b = 2, f(n) = n2, nlogba = nlog24 = n2

•  compare f(n) = n2 with n2

 n2 = θ(n2) (so f(n) is polynomially equal)
•  Case 2 holds and T(n) ∈ θ(n2lgn)

Solving Recurrences: Alt. Master Method

 Example: T(n) = T(n/2) + n2

•  a = 1, b = 2, k = 2, p = 0, and nlog21=n0

•  compare a = 1 with b = 2k, where k = 2

 1 < 4
•  Since p ≥ 0, case 3a) applies and T(n) = θ(n2log0n) ∈ θ(n2)

Example: T(n) = 4T(n/2) + n2

•  a = 4, b = 2, k = 2, p = 0, and nlog24 = n2

•  compare a = 4 with bk = 22 = 4
 4 = 4

•  Since p > −1, case 2a) applies and T(n) = θ(nlog24log1n)
∈ θ(n2logn)

Solving Recurrences: Master Method

Example: T(n) = 7T(n/2) + n2

Example: T(n) = 7T(n/3) + n2

•  a = 7, b = 3, f(n) = n2, nlogba = nlog37 = n1+ ε

•  compare f(n) = n2 with n1+ ε

 n2 = Ω(n1+ε) (so f(n) is polynomially larger)
•  Since f(n) is a polynomial in n, case 3 holds and T(n) ∈ θ(n2)

•  a = 7, b = 2, f(n) = n2, nlogba = nlog27 = n2+ ε

•  compare f(n) = n2 with n2+ ε

 n2 = O(n2+ε) (so f(n) is polynomially smaller)
•  Case 1 holds and T(n) ∈ θ(nlog27)

Solving Recurrences: Alt. Master Method

Example: T(n) = 7T(n/2) + n2

Example: T(n) = 7T(n/3) + n2

•  a = 7, b = 3, k=2, p = 0, and nlogba= nlog37 = n1+ε

•  compare a = 7 with bk = 32, 7 < 9
•  Since p ≥ 0, case 3a) holds and T(n) ∈ θ(n2log0n)
 θ(n2)

•  a = 7, b = 2, k = 2, p = 0, nlogba = nlog27 = n1+ε

•  compare a = 7 with bk = 22, a > b because 7 > 4
•  Case 1 holds and T(n) ∈ θ(nlog27)

2/7/19

5

Checking an Upper Bound
Give an upper bound on the recurrence: T(n) = 2T(⎣n/2⎦) + n.
Show T(n) ≤ cnlgn for some c > 0.

Assume T(⎣n/2⎦) ≤ c ⎣n/2⎦ lg(⎣n/2⎦). ���

T(n) ≤ 2(c⎣n/2⎦lg(⎣n/2⎦)) + n
≤ cnlg(n/2) + n
= cnlgn - cnlg2 + n
= cnlgn - cn + n
≤ cnlgn for c >= 1.

Mathematical induction on a good guess
Suppose T(n) = 1 if n = 2, and T(n) = T(n/2) + θ(1) if n = 2k, ���
for k > 1.
Show T(n) = lgn by induction on the exponent k.

Basis: When k = 1, n = 2. T(2) = lg2 = 1.
IHOP: Assume T(2k) = lg2k for some constant k >1. ���

Inductive step: Show T(2k+1) = lg(2k+1) = k+1.
T(2k+1) = T(2k+1/2) + 1 /* by definition of T(n) */
 = T(2k) + 1

= (lg2k) + 1 /* by inductive hypothesis */
= k + 1 /* lg2k = k */

Checking an Upper Bound Using Induction
Suppose T(n) = 1 if n = 1, and T(n) = T(n-1) + θ(n) for n > 1.
Show T(n) = O(n2) by induction.

Basis: When n = 1. T(1) = 12 = 1.
IHOP: Assume T(i) = i2 for all i < k. ���

Inductive step: Show T(k) = k2.
T(k) = T(k-1) + k /* given */

= (k-1)2 + k /* by inductive hypothesis */
= k2 - k + 1
≤ k2 for k > 1

