Analyzing Recursive Algorithms (Ch. 4)

A recursive algorithm can often be described by a recurrence equation that describes the overall runtime on a problem of size \boldsymbol{n} in terms of the runtime on smaller inputs.

For divide-and-conquer algorithms, we get recurrences like:

$$T(n) = \begin{cases} \theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

where

- a = number of subproblems we divide the problem into
- n/b = size of the subproblems (in terms of n)
- D(n) = time to divide the size n problem into subproblems
- *C(n)* = time to combine the subproblem solutions to get the answer for the problem of size *n*

Review of Logarithms

A logarithm is an *inverse exponential* function. Saying $b^x = y$ is equivalent to saying $\log_b y = x$.

properties of logarithms:

$$\begin{split} &\log_b(xy) = \log_b x + \log_b y \\ &\log_b\left(x/y\right) = \log_b x - \log_b y \\ &\log_b x^a = \operatorname{alog}_b x \\ &\log_b a = \log_x a/\log_x b \quad \text{(reason log base doesn't matter, asymp)} \\ &a = b^{\log_a a} \quad (e.g., \ n = 2^{\lg n} = n^{\lg 2}) \\ &\lg^k n = (\lg n)^k \\ &\lg\lg(n) = \lg(\lg n) \end{split}$$

Solving Recurrences

We will use the following methods to solve recurrences

- Backward Substitution: involves substitution and expansion until seeing a pattern, converting result to a summation.
- 2. Apply the "Master Theorem": If the recurrence has the form T(n) = aT(n/b) + f(n)

then there are 2 formulae that can (often) be applied; one of these is given in § 4-3.

Recurrence trees can be used along with backward substitution to guess the running time of a recurrence relation. Most recurrences of the form shown above will be solved using the Master Theorem.

To make the solutions simpler, we will

• assume base cases are constant, i.e., $T(n) = \theta(1)$ for n small enough.

Analyzing Recursive Algorithms

For recursive algorithms such as computing the factorial of n, we get an expression like the following:

$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + D(n) + C(n) & \text{otherwise} \end{cases}$$

where

- n-1 = size of the subproblems (in terms of n)
- D(n) = time to divide the size n problem into subproblems
- C(n) = time to combine the subproblem solutions to get the answer for the problem of size n

Solving recurrence with backward substitution

```
Algorithm F(n)
                                 T(n) = T(n-1) + 1 subst T(n-1) = T(n-2) + 1
 Input: a positive integer n
                                 = [T(n-2) + 1] + 1 = T(n-2) + 2
 Output: n!
                                                    subst T(n-2) = T(n-3) + 1
                                 =[T(n-3)+1]+2=T(n-3)+3
1. if n=0
2. return 1
                                 =T(n-i) + i =
3. else
4. return F(n-1) * n
                                 = T(n-n) + n = T(0) + n = 0 + n = O(n)
T(n) = T(n-1) + 1
                                 Therefore, this algorithm has linear running
T(0) = 0
```

We solved this recurrence (ie, found an expression of the running time T(n) that is not given in terms of itself) using a method known as *backward substitution*.

Solving Recurrences: Backward Substitution

Solving Recurrences: Backward Substitution

```
Example: T(n) = 4T(n/2) + n
         = 4T(n/2) + n
T(n)
          = 4[(1/2) + 1]
= 4[4T(n/4) + n/2] + n
= 16T(n/4) + 4n/2 + n
= 16[4T(n/8) + n/4] + 2n + n
= 64T(n/8) + 16n/4 + 2n + n
                                                              /* expand T(n/2) */
                                                              /* simplify */
/* expand T(n/4) */
                                                              /* simplify */
          = 64T(n/8) + 4n + 2n + n
                 .. continue until T(n/n) = T(1) is reached
          = 4^{lgn}T(n/2^{lgn}) + ... + 4n + 2n + n /* after lgn iterations */
          = c4^{lgn} + n \sum_{k=0}^{lgn-1} 2^k = 2^0 + 2^1 + ... + 2^{lgn-1} /* convert to summation */
                                               /* 4^{lgn} = n^{lg4} = n^2 */
          = cn^{lg4} + n (2^{lgn} - 1)
          = cn^2 + n(n-1)
                                                /* 2^{lgn} = n^{lg2} = n */
          = O(n^2)
```

Binary Search (iterative version)

```
Algorithm Binary-Search(A[1...n], k)
 Input: a sorted array A of n comparable items and search key k
 Output: Index of array's element that is equal to k or -1 if k not found
1. l = 1: r =n
2. while I <= r
3.
        m = \lfloor (l + r)/2 \rfloor
                                   ; m is midpoint
        if k = A[m] return m
                                      ; found k, return index of k
        else if k < A[m] r = m - 1 ; k is in lower half
5.
6.
        else I = m + 1
                                        : k is in upper half
7. return -1
```

What is the running time of this algorithm for an input of size n?

Are there best and worst case input instances?

Binary Search (recursive version)

```
Algorithm Binary-Search-Rec(A[1...n], k, l, r)

Input: a sorted array A of n comparable items, search key k, leftmost and rightmost index positions in A

Output: Index of array's element that is equal to k or -1 if k not found

1. if (l > r) return -1

2. else

3. m = [(l + r)/2] ; m is midpoint

4. if k = A[m] return m

5. else if k < A[m] return Binary-Search-Rec(A, k, l, m-1)

6. else return Binary-Search-Rec(A, k, m+1, r)
```

What is the running time of this algorithm for an input of size n?

Solving Recurrences: Backward Substitution

Solving Recurrences: Master Method (§4.3)

The master method provides a 'cookbook' method for solving recurrences of a certain form.

Master Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + f(n)$$

Where a is the number of subproblems, n/b is the size of each subproblem, and f(n) is the time to divide or combine data.

Then, T(n) can be bounded asymptotically as follows:

```
1. T(n) = \theta(n^{log_b a}) if f(n) = O(n^{log_b a \cdot \epsilon}) for some constant \epsilon > 0
```

- 2. $T(n) = \theta(n^{\log_b a} \lg n)$ if $f(n) = \theta(n^{\log_b a})$
- if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ 3. $T(n) = \theta(f(n))$

Solving Recurrences: Master Method

Intuition: Compare f(n) with $\theta(n^{log}b^a)$.

case 1: f(n) is "polynomially smaller than" $\theta(n^{\log_b a})$

case 2: $\mathit{f}(n)$ is "asymptotically equal to" $\theta(n^{log}b^a)$

case 3: f(n) is "polynomially larger than" $\theta(n^{\log_b a})$

What is $log_b a$? The number of times we divide a by b to reach O(1).

Solving Recurrences: Master Method (§4.3)

Master Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + f(n)$$

Then, T(n) can be bounded asymptotically as follows:

1. $T(n) = \theta(n^{\log_b a})$ if $f(n) = O(n^{log}b^{a-\epsilon})$ for some constant $\epsilon > 0$

2. $T(n) = \theta(n^{\log_b a} | gn)$ if $f(n) = \theta(n^{\log_b a})$

3. $T(n) = \theta f(n)$ if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and if $a(f(n/b)) \le c(f(n))$ for some positive constant c < 1 and all sufficiently large n.

Case 3 requires us to also show $a(f(n/b)) \le c(f(n))$, the "regularity" condition.

The regularity condition always holds whenever $f(n)=n^k$ and $f(n)=\Omega(n^{\log_b n+\epsilon})$, so we don't need to check it when f(n) is a polynomial.

Solving Recurrences: Master Method (§4.3)

These 3 cases do not cover all the possibilities for f(n).

There is a gap between cases 1 and 2 when f(n) is smaller than $n^{log_ba}\!,$ but not polynomially smaller.

There is a gap between cases 2 and 3 when f(n) is larger than n^{log_ba} , but not polynomially larger.

If the function falls into one of these 2 gaps, or if the regularity condition can't be shown to hold, then the master method can't be used to solve

Solving Recurrences: Master Method (§4.3)

A more general version of Case 2 follows:

$$T(n) = \theta(n^{log_ba}lg^{k+1}n) \qquad \text{ if } \qquad f(n) = \theta(n^{log_ba}lg^kn) \text{ for } k \geq 0$$

This case covers the gap between cases 2 and 3 in which f(n) is larger than n^{log}ba by only a polylog factor. We'll see an example of this type of recurrence in class.

Alternate Version of Master Method

Master Theorem: Let $a \ge 1$, b > 1, $k \ge 0$ be constants, let p be a real number, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + \theta(n^k log^p n)$$

Then, T(n) can be bounded asymptotically as follows:

- $1. \ \ If \ a>b^k \ , \ \ then \qquad T(n)=\theta(n^{log_ba})$
- 2. If $a = b^k$, then
 - a) If p > -1, then $T(n) = \theta(n^{log_ba} log^{p+1} n)$ b) If p = -1, then $T(n) = \theta(n^{log_ba} log log n)$ c) If p < -1, then $T(n) = \theta(n^{log_ba})$
- 3. If $a < b^k$, then
 - a) If $p \ge 0$, then $T(n) = \theta(n^k \log^p n)$ b) If p < 0, then $T(n) = \theta(n^k)$

Like the version of the master theorem in our book, this doesn't hold for cases in which a, b, or k are not in the correct range.

Solving Recurrences: Master Method

Example: T(n) = 9T(n/3) + n

- $a = 9, b = 3, f(n) = n, n^{\log_b a} = n^{\log_3 9} = n^2$
- compare f(n) = n with n^2
- $n = O(n^{2-\epsilon})$ (so f(n) is polynomially smaller than $n^{\log_b a}$)
- case 1 applies: $T(n) \in \theta(n^2)$

Example: T(n) = T(n/2) + 1

- $\bullet \quad a=1\,,\,b=2\,,\,f(n)=1\,,\,n^{log_ba}=n^{log_21}=n^0=1$
- compare f(n) = 1 with 1
 - $1 = \theta(n^0)$ (so f(n) is polynomially equal to $n^{\log_b a}$)
- case 2 applies: $T(n) \in \theta(n^0 \lg n) \in \theta(\lg n)$

Solving Recurrences: Alt. Master Method

Example 1a: T(n) = 9T(n/3) + n

- $a = 9, b = 3, k = 1, p = 0, \log_3 9 = 2$
- compare a = 9 with $b^k = 3^1 = 3$
- case 1 applies: $T(n) \in \theta(n^{log_39}) \in \theta(n^2)$

Example 2a: T(n) = T(n/2) + 1

- $\bullet \quad a=1\,,\,b=2\,,\,k=0\,,\,p=0\,,\,\text{and }log_21=0$
- compare a = 1 with $b^k = 2^0 = 1$ $a = b^0$ because 1 = 1
- since p > -1, case 2(a) applies: $T(n) \in \theta(n^{log_2 l} lgn) = (n^0 lg^{p+1} n)$ $= (\lg^1 n) \in \theta(\lg n)$

Solving Recurrences: Master Method

Example: $T(n) = T(n/2) + n^2$

- $\bullet \quad a=1, b=2, f(n)=n^2, n^{log_b a}=n^{log_2 1}=n^0=1$
- compare $f(n) = n^2$ with 1
 - $n^2 = \Omega(n^{0+\epsilon}) \ \ (\text{so } f(n) \text{ is polynomially larger})$
- Since f(n) is a polynomial in n, case 3 holds, $T(n) \in \theta(n^2)$

Example: $T(n) = 4T(n/2) + n^2$

- a = 4, b = 2, $f(n) = n^2$, $n^{\log_b a} = n^{\log_2 4} = n^2$
- compare $f(n) = n^2$ with n^2
 - $n^2 = \theta(n^2)$ (so f(n) is polynomially equal)
- Case 2 holds and $T(n) \in \theta(n^2 \lg n)$

Solving Recurrences: Alt. Master Method

Example: $T(n) = T(n/2) + n^2$

- $a = 1, b = 2, k = 2, p = 0, and n^{log_2 1} = n^0$
- compare a = 1 with $b = 2^k$, where k = 2
 - 1 < 4
- Since $p \ge 0$, case 3a) applies and $T(n) = \theta(n^2 log^0 n) \in \theta(n^2)$

Example: $T(n) = 4T(n/2) + n^2$

- a = 4, b = 2, k = 2, p = 0, and $n^{log_2 4} = n^2$
- compare a = 4 with $b^k = 2^2 = 4$
 - 4 = 4
- Since p > -1, case 2a) applies and $T(n) = \theta(n^{log_2 4} log^1 n)$ $\in \theta(n^2 log n)$

Solving Recurrences: Master Method

Example: $T(n) = 7T(n/3) + n^2$

- $a = 7, b = 3, f(n) = n^2, n^{\log_b a} = n^{\log_3 7} = n^{1+\epsilon}$
- compare $f(n) = n^2$ with $n^{1+\epsilon}$

 $n^2 = \Omega(n^{1+\epsilon}) \ \ (so \ f(n) \ is \ polynomially \ larger)$

• Since f(n) is a polynomial in n, case 3 holds and $T(n) \in \theta(n^2)$

Example: $T(n) = 7T(n/2) + n^2$

- $\bullet \quad a=7,\, b=2,\, f(n)=n^2,\, n^{log_b a}=n^{log_2 7}=n^{2+\,\epsilon}$
- compare $f(n) = n^2$ with $n^{2+\epsilon}$

 $n^2 = O(n^{2+\epsilon}) \ \, (\text{so } f(n) \text{ is polynomially smaller})$ • Case 1 holds and $T(n) \in \theta(n^{\log_2 7})$

Solving Recurrences: Alt. Master Method

Example: $T(n) = 7T(n/3) + n^2$

- a = 7, b = 3, k=2, p = 0, and $n^{log}b^a = n^{log}b^7 = n^{1+\epsilon}$
- compare a = 7 with $b^k = 3^2, 7 < 9$
- Since $p \ge 0$, case 3a) holds and $T(n) \in \theta(n^2 \log^0 n)$ $\theta(n^2)$

Example: $T(n) = 7T(n/2) + n^2$

- $\bullet \quad a=7,\, b=2,\, k=2,\, p=0,\ n^{log_{b}a}=n^{log_{2}7}=n^{1+\epsilon}$
- compare a = 7 with $b^k = 2^2$, a > b because 7 > 4
- Case 1 holds and $T(n) \in \theta(n^{\log_2 7})$

Checking an Upper Bound

Give an upper bound on the recurrence: $T(n) = 2T(\lfloor n/2 \rfloor) + n$. Show $T(n) \le \text{cnlgn}$ for some c > 0.

Assume $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$.

```
\begin{array}{ll} T(n) & \leq & 2(c \lfloor n/2 \rfloor lg(\lfloor n/2 \rfloor)) + n \\ & \leq & cnlg(n/2) + n \\ & = & cnlgn - cnlg2 + n \\ & = & cnlgn - cn + n \\ & \leq & cnlgn \end{array}
```

for c >= 1.

Mathematical induction on a good guess

Suppose T(n) = 1 if n = 2, and $T(n) = T(n/2) + \theta(1)$ if $n = 2^k$, for k > 1. Show T(n) = lgn by induction on the exponent k.

<u>Basis:</u> When k = 1, n = 2. $T(2) = \lg 2 = 1$.

<u>IHOP</u>: Assume $T(2^k) = \lg 2^k$ for some constant k > 1.

<u>Inductive step:</u> Show $T(2^{k+1}) = \lg(2^{k+1}) = k+1$.

Checking an Upper Bound Using Induction

Suppose T(n)=1 if n=1, and $T(n)=T(n-1)+\theta(n)$ for n>1. Show $T(n)=O(n^2)$ by induction.

<u>Basis:</u> When n = 1. $T(1) = 1^2 = 1$.

<u>IHOP:</u> Assume $T(i) = i^2$ for all i < k.

<u>Inductive step:</u> Show $T(k) = k^2$.

T(k) = T(k-1) + k /* given */ = $(k-1)^2 + k$ /* by inductive hypothesis */ = $k^2 - k + 1$ $\leq k^2$ for k > 1