
2/6/19

1

CMPU241 Analysis of Algorithms

Day 4
Proofs of Algorithm Correctness

Using Loop Invariants

To prove an algorithm is correct, you
need to know how the algorithm
transforms input to output.

E.g., an algorithm to find the maximum
value element in a set of totally
ordered data is correct if its output is
the largest number in the set.

What outcome is correct if you are
running a sorting algorithm on a set
of comparable data elements?

All the elements are in some
specified ordering, commonly
ascending order.

What outcome is correct if you are
running a sorting algorithm on a set
of comparable data elements?

All the elements are in some sorted
order (increasing or decreasing).

A loop invariant generally refers to the
actions inside a loop, starts by showing that
the initial condition or basis fits some
criteria, and argues that consecutive
iterations of the loop uphold these criteria.
We will generally use proof by induction on
the number of loop iterations.

Unlike most proofs by induction, algorithms
terminate, resulting in the entire data set
upholding the loop invariant to produce the
correct result.

 FindMax(A[1…n])

1.  max = A[1]
2.  for (k = 2; k <=n; k++)
3.  if (A[k] > max)
4.  max = A[k]
5.  return max

Loop invariant? Let k be the position of the current
max in the array A. At the start of iteration k of the
for loop, max contains the largest value in A[1...k-1].

INPUT: An array A of n comparable items

OUTPUT: The value of the maximum item in the array

2/6/19

2

Base case: k = 2. Since max is set to equal A[1] before the first iteration,
max holds the largest value in A[1...k-1] = A[1...1] = A[1].

Inductive hypothesis: Assume the invariant holds through the beginning
of the iteration where 1<= k < n, when max is the largest value in
A[1...k-1].

Inductive Step (Maintenance): Show the invariant holds at the
end of iteration k, the beginning of iteration k+1. Show that
max is the largest value in A[1...k].

By the inductive hypothesis, we know that max is the largest
value in A[1…k-1] at the start of iteration k. In iteration k,
the maximum element in A[1...k] is found by comparing max
to the value in A[k]. Due to the total ordering on comparable
items, max is either unchanged in this iteration or it is set to
the value in A[k]. In either case, at the beginning of
iteration k+1, max is the largest value in A[1...k].

Termination: The for loop ends when k = n+1. At that point,
max is the largest value in A[1...n]. Therefore at the end of
the algorithm, the value of the maximum item in A[1...n] is
returned and the algorithm is correct.
QED

Proving Correctness—Insertion Sort

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

We need to show...
1.  …that the loop invariant is true at the start of the first iteration (base

case or initialization),
2.  … the invariant remains true for the next k < n iterations (inductive

hypothesis (IH) or maintenance), and
3.  …the algorithm has the correct result when the loop terminates.

Proving Correctness—Base Case

Base case (initialization): When j = 2, A[1...j-1] has a single
element and is therefore trivially sorted.

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—Inductive Hypothesis

Inductive Hypothesis (IH): Assume the invariant holds through the
beginning of the iteration where j = k < n.

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—Inductive Step

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Inductive Step (Maintenance): Show the invariant holds at the end of the
iteration when j = k.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

2/6/19

3

Proving Correctness—Inductive Step

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

When j = k, key = A[k]. By the IHOP, we know that the subarray A[1…k-1] is in
sorted order. In iteration k, A[k-1], A[k-2], A[k-3] and so on are each moved one
position to the right until either a value less than key is found or until k-1 values
have been shifted right, when the value of key is inserted. Due to the total ordering
on a comparable data set, key will be inserted in the right position in the values
A[1…k], so at the beginning of iteration k+1, the subarray A[1…k] will contain only
the elements that were originally in A[1…k], but in sorted order. Therefore, the
loop invariant holds at the start of iteration k+1.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—Termination

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Termination: The for loop ends when j = n+1. By the IHOP, we have
that the subarray A[1...n] is in sorted order. Therefore, the entire
array is sorted and the algorithm is correct. QED

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—BubbleSort

BubbleSort(A) // A.length = n
(assume problem statement = that of InsertionSort)

1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

We need to show...
1.  … the loop invariant is true at the start of the first iteration (base

case or initialization),
2.  … the invariant remains true for the next k <= n iterations (inductive

hypothesis (IHOP) or maintenance), and
3.  …the algorithm has the correct result when the loop terminates.

Loop invariant:
At the start of iteration i of
the outer for loop, the
subarray A[1...i − 1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

Proving Correctness—BubbleSort Basis

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Loop invariant:
At the start of iteration i, the
subarray A[1 . . . i − 1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

•  Basis (initialization): In the first iteration, i = 1 and the
subarray A[1 . . . 0] is trivially sorted with the 0 smallest
elements.

Proving Correctness—BubbleSort IHOP

Loop invariant:
At the start of iteration i, the
subarray A[1 . . . i − 1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

Inductive Hypothesis: Assume the invariant holds through
the beginning of the iteration where i = k < n, so subarray
A[1 . . . k-1] is sorted and contains the k-1 smallest elements
of A.

Now, we have to argue why the kth pass through the inner
for loop upholds the invariant for the beginning of iteration
k+1.

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Proving Correctness—BubbleSort inductive step

Loop invariant:
At the start of iteration i, the
subarray A[1 . . . i − 1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

•  Inductive step: In iteration i=k, the inner for loop starts at the nth
element of A and compares it with the (n-1)st element; if the nth
element is smaller than the (n-1)st element, they are swapped,
otherwise nothing changes.

This compare-and-swap or no swap continues, with smaller elements
“bubbling down” as they are swapped with larger elements, until the
inner for loop decrements to index k+1, when it compares the
elements in positions k + 1 and k.

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

2/6/19

4

Proving Correctness—BubbleSort Maintenance

Loop invariant:
At the start of iteration i, the
subarray A[1 . . . i − 1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

•  Because of our assumption that the set of elements in A is totally
ordered, the smallest element of subarray A[k + 1…n] is found and
swapped all the way to position k. At this point, the smallest element
of A[k…n] is in position k, and so the elements in subarray A[1…k] are
in sorted order, with the k smallest elements in positions 1…k at the
start of iteration k + 1, as required.

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Proving Correctness—BubbleSort Termination

Loop invariant:
At the start of iteration i, the
subarray A[1 . . . i − 1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

•  When the loop terminates, i = n. The invariant says that subarray
A[1...n-1] is in sorted order and the n-1 smallest elements of A are in
positions 1...n-1. So the element in position n must be the largest in A.
Therefore, the entire array is sorted in ascending order and the
algorithm is correct. QED

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

