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CMPU241 Analysis of Algorithms 

Day 4 
Proofs of Algorithm Correctness 

Using Loop Invariants 

To prove an algorithm is correct, you 
need to know how the algorithm 
transforms input to output. 
 
E.g., an algorithm to find the maximum 
value element in a set of totally 
ordered data is correct if its output is 
the largest number in the set.  

What outcome is correct if you are 
running a sorting algorithm on a set 
of comparable data elements? 

All the elements are in some 
specified ordering, commonly 
ascending order. 

What outcome is correct if you are 
running a sorting algorithm on a set 
of comparable data elements? 
 
All the elements are in some sorted 
order (increasing or decreasing). 

A loop invariant generally refers to the 
actions inside a loop, starts by showing that 
the initial condition or basis fits some 
criteria, and argues that consecutive 
iterations of the loop uphold these criteria. 
We will generally use proof by induction on 
the number of loop iterations. 

Unlike most proofs by induction, algorithms 
terminate, resulting in the entire data set 
upholding the loop invariant to produce the 
correct result. 

 

       FindMax(A[1…n]) 
 
 
 
 

1.   max = A[1] 
2.   for ( k = 2;  k <=n; k++) 
3.        if (A[k] > max) 
4.             max = A[k]  
5.   return max 
 
 
Loop invariant?  Let k be the position of the current 
max in the array A.  At the start of iteration k of the 
for loop, max contains the largest value in A[1...k-1].
 

INPUT:      An array A of n comparable items 
 
OUTPUT:  The value of the maximum item in the array  
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Base case:  k = 2. Since max is set to equal A[1] before the first iteration, 
max holds the largest value in A[1...k-1] = A[1...1] = A[1].

Inductive hypothesis:  Assume the invariant holds through the beginning 
of the iteration where 1<= k < n, when max is the largest value in 
A[1...k-1].

Inductive Step (Maintenance):  Show the invariant holds at the 
end of iteration k, the beginning of iteration k+1.  Show that 
max is the largest value in A[1...k]. 
 
By the inductive hypothesis, we know that max is the largest 
value in A[1…k-1] at the start of iteration k.  In iteration k, 
the maximum element in A[1...k] is found by comparing max 
to the value in A[k]. Due to the total ordering on comparable 
items, max is either unchanged in this iteration or it is  set to 
the value in A[k].  In either case, at the beginning of 
iteration k+1, max is the largest value in A[1...k]. 

 

 
Termination:  The for loop ends when k = n+1.  At that point, 
max is the largest value in A[1...n].  Therefore at the end of 
the algorithm, the value of the maximum item in A[1...n] is 
returned and the algorithm is correct.    
QED 
 
 
 

Proving Correctness—Insertion Sort 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray   
A[1...j-1] consists of the 
elements originally in 
A[1...j-1], but in sorted order. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

We need to show...  
1.  …that the loop invariant is true at the start of the first iteration (base 

case or initialization), 
2.  … the invariant remains true for the next k < n iterations (inductive 

hypothesis (IH) or maintenance), and 
3.  …the algorithm has the correct result when the loop terminates. 

Proving Correctness—Base Case 

Base case (initialization):  When j = 2, A[1...j-1] has a single 
element and is therefore trivially sorted. 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—Inductive Hypothesis 

Inductive Hypothesis (IH): Assume the invariant holds through the 
beginning of the iteration where j = k < n. 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—Inductive Step 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Inductive Step (Maintenance):  Show the invariant holds at the end of the 
iteration when j = k. 
  

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 
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Proving Correctness—Inductive Step 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

When j = k, key = A[k]. By the IHOP, we know that the subarray A[1…k-1] is in 
sorted order.  In iteration k, A[k-1], A[k-2], A[k-3] and so on are each moved one 
position to the right until either a value less than key is found or until k-1 values 
have been shifted right, when the value of key is inserted. Due to the total ordering 
on a comparable data set, key will be inserted in the right position in the values 
A[1…k], so at the beginning of iteration k+1, the subarray A[1…k] will contain only 
the elements that were originally in A[1…k], but in sorted order.  Therefore, the 
loop invariant holds at the start of iteration k+1. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—Termination 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Termination:  The for loop ends when j = n+1.  By the IHOP, we have 
that the subarray A[1...n] is in sorted order.  Therefore, the entire 
array is sorted and the algorithm is correct.   QED 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—BubbleSort 

BubbleSort(A)    // A.length = n 
(assume problem statement = that of InsertionSort) 

1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.                swap A[j] with A[j-1] 

We need to show...  
1.  … the loop invariant is true at the start of the first iteration (base 

case or initialization), 
2.  … the invariant remains true for the next k <= n iterations (inductive 

hypothesis (IHOP) or maintenance), and 
3.  …the algorithm has the correct result when the loop terminates. 

Loop invariant:   
At the start of iteration i of 
the outer for loop, the 
subarray A[1...i − 1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

Proving Correctness—BubbleSort Basis 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Loop invariant:   
At the start of iteration i, the 
subarray A[1 . . . i − 1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

•  Basis (initialization):  In the first iteration, i = 1 and the 
subarray A[1 . . . 0] is trivially sorted with the 0 smallest 
elements.  

Proving Correctness—BubbleSort IHOP 

Loop invariant:   
At the start of iteration i, the 
subarray A[1 . . . i − 1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

Inductive Hypothesis: Assume the invariant holds through 
the beginning of the iteration where i = k < n, so subarray 
A[1 . . . k-1] is sorted and contains the k-1 smallest elements 
of A.  
 

Now, we have to argue why the kth pass through the inner 
for loop upholds the invariant for the beginning of iteration  
k+1. 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Proving Correctness—BubbleSort inductive step 

Loop invariant:   
At the start of iteration i, the 
subarray A[1 . . . i − 1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

•  Inductive step:  In iteration i=k, the inner for loop starts at the nth 
element of A and compares it with the (n-1)st element; if the nth 
element is smaller than the (n-1)st element, they are swapped, 
otherwise nothing changes.  
 
This compare-and-swap or no swap continues, with smaller elements 
“bubbling down” as they are swapped with larger elements, until the 
inner for loop decrements to index k+1, when it compares the 
elements in positions k + 1 and k. 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 
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Proving Correctness—BubbleSort Maintenance 

Loop invariant:   
At the start of iteration i, the 
subarray A[1 . . . i − 1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

•  Because of our assumption that the set of elements in A is totally 
ordered, the smallest element of subarray A[k + 1…n] is found and 
swapped all the way to position k. At this point, the smallest element 
of A[k…n] is in position k, and so the elements in subarray A[1…k] are 
in sorted order, with the k smallest elements in positions 1…k at the 
start of iteration k + 1, as required.  

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Proving Correctness—BubbleSort Termination 

Loop invariant:   
At the start of iteration i, the 
subarray A[1 . . . i − 1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

•  When the loop terminates, i = n. The invariant says that subarray 
A[1...n-1] is in sorted order and the n-1 smallest elements of A are in 
positions 1...n-1. So the element in position n must be the largest in A.  
Therefore, the entire array is sorted in ascending order and the 
algorithm is correct.   QED  

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 


