
2/4/19

1

CMPU241 Analysis of Algorithms

Day 4
Proofs of Algorithm Correctness

Using Loop Invariants

To prove an algorithm is correct, you
need to know how the algorithm
transforms input to correct output.

E.g., an algorithm to find the maximum value
element in a set of totally ordered data is
correct if its output is the largest number in
the set.

What outcome is correct if you are
running a sorting algorithm on a set
of comparable data elements?

All the elements are in some specified
ordering, commonly ascending order.

A loop invariant proof generally starts by
showing that the initial condition or basis fits
some criteria, and argues that consecutive
iterations of the loop uphold these criteria. We
will use proof by induction on the number of
loop iterations to prove our claims.
Unlike most proofs by induction, algorithms
terminate, resulting in the entire data set upholding
the loop invariant to produce the correct result.

The parts of the proof are:

1.  State the loop invariant.

2.  Show that the invariant holds at the start of the 1st

iteration.

3.  Assume the invariant holds up to some iteration k > 1
(inductive hypothesis).

4.  Show the actions that occur in iteration k lead to the
invariant holding for the k+1st iteration (inductive step
uses inductive hypothesis).

5.  Argue that, at termination, the algorithm produces the
desired result.

 FindMax(A[1…n])

1.  max = A[1]
2.  for (i = 2; i <=n; i++)
3.  if (A[i] > max)
4.  max = A[i]
5.  return max

INPUT: An array A of n comparable items

OUTPUT: The value of the maximum item in the array

 Does this algorithm have variable running time on input arrays with
different contents or orderings of size n ?

 Give the line number of the basic operation. €

1
i= l

u

∑ = u − l +11
i=2

n

∑ = n− 2+1

2/4/19

2

Loop invariant for Find-Max:

Loop invariant: At the start of each iteration k, max
contains the largest value in A[1...k-1].

Base case: k = 2. Since max is set to equal A[1]
before the first iteration, max holds the largest
value in A[1...k-1] = A[1...1] = A[1]. So the base
case holds.

Inductive hypothesis: Assume the invariant holds
through the beginning of iteration k, where
2 < k < n, so max is the largest value in A[1...k-1].

Inductive Step (Maintenance): Show the invariant holds
at the end of iteration k, the beginning of iteration k
+1. Show that max is the largest value in subarray
A[1...k] at the beginning of iteration k+1.

By the inductive hypothesis, we know that max is
the largest value in A[1…k-1] at the start of iteration
k. In iteration k, the maximum element in A[1...k] is
found by comparing max to the value in A[k]. Due to
the total ordering on comparable items, max is
either unchanged in this iteration because max >=
A[k] or max is set to A[k] because max < A[k]. In
either case, at the beginning of iteration k+1, max is
the largest value in A[1...k].

Termination: The for loop ends when k = n+1. At
that point, max is the largest value in

 A[1...(n+1)-1] = A[1...n].
Therefore, at the end of the algorithm, the value of
the maximum item in A[1...n] is returned and the
algorithm is correct.

QED

Example: Sorting Problem
The algorithmic problem known as sorting is defined as
follows:

INPUT: An array A[1…n] of n totally ordered elements {a1, a2,..., an}
OUTPUT: A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′}

 such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′.

Example instances of input for the sorting problem:

 {Mike, Sally, Herbert, Tony, Jill}
 {101, 111111, 1111, 100, 1010, 101010}

Example instances of output for the given instances of the sorting
problem above:

 {Herbert, Jill, Mike, Sally, Tony}
 {100, 101, 1010, 1111, 101010, 111111}

 InsertionSort(A)

1.  for (j = 2 to length[A])
2.  key = A[j]
3.  i = j – 1
4.  while (i > 0 and A[i] > key)
5.  A[i + 1] = A[i]
6.  i = i - 1
7.  A[i + 1] = key

INPUT: An array A of n items {a1, a2,..., an}

OUTPUT: A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′}

 such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′.

Sorting Algorithm

Does InsertionSort have best- and worst-case run times?

Real-time Analysis of InsertionSort

 InsertionSort(A) times

 1. for j = 2 to length[A] n

 2. key = A[j] n-1

 3. i = j - 1 n-1

 4. while i > 0 and A[i] > key

 5. A[i + 1] = A[i]

 6. i = i – 1

 7. A[i + 1] = key n-1

€

t j
j= 2

n

∑

€

(t j −1)
j= 2

n

∑

(t j −1)
j=2

n

∑

2/4/19

3

Analysis of InsertionSort

 InsertionSort(A)
c1 for j = 2 to length[A]
c2 key = A[j]
c3 i = j - 1
c4 while i > 0 and A[i] > key
c5 A[i + 1] = A[i]
c6 i = i - 1
c7 A[i + 1] = key

•  Give an instance of
best-case and worst-
case inputs.

What is the real running time for the best case?
 c1n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)
 = (c1 + c2 + c3 + c4 + c7)n – (c2+ c3+ c4 + c7) = an - b

What is the real running time for the worst case?
 Add up terms on last slide. (an2 + bn + c)

Proving Correctness—Insertion Sort

Loop invariant:
At the start of each iteration
of the for loop of lines 1-7,
the subarray A[1...j-1]
consists of the elements
originally in A[1...j-1], but in
sorted order.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

We need to show...
1.  …that the loop invariant is true at the start of the first iteration (base

case or initialization),
2.  … the invariant remains true for the next k < n iterations (inductive

hypothesis (IHOP) or maintenance), and
3.  …the algorithm has the correct result when the loop terminates.

Proving Correctness—Base Case

Base case (initialization): When j = 2, A[1...j-1] has a single
element and is therefore trivially sorted.

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—Inductive Hypothesis

Inductive Hypothesis (IH): Assume the invariant holds through the
beginning of the iteration where 2 < j = k < n.

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—Inductive Step

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Inductive Step (Maintenance): Show the invariant holds at the end of the
iteration when j = k, and the beginning of the next iteration when
j = k+1.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—Inductive Step

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

When j = k, key = A[k]. By the IHOP, we know that the subarray A[1…k-1] is in
sorted order. In iteration k, each key to the left of A[k]: A[k-1], A[k-2], A[k-3]..., is
moved one position to the right until either a value less than key is found or until
k-1 values have been shifted right, when the value of key is inserted. Due to the
total ordering on comparable data, key will be inserted in the correct position in the
values A[1…k], so at the beginning of iteration k+1, the subarray A[1…k] will
contain only the elements that were originally in A[1…k], but in sorted order.
Therefore, the loop invariant holds at the start of iteration k+1.

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

2/4/19

4

Proving Correctness—Termination

Loop invariant:
Let j be the position of the
current key in the array A.
At the start of each iteration
of the for loop, the subarray
A[1...j-1] consists of the
elements originally in
A[1...j-1], but in sorted order.

Termination: The for loop ends when j = n+1. By the IHOP, we have
that the subarray A[1...n] is in sorted order. Therefore, the entire
array is sorted and the algorithm is correct. QED

Insertion-Sort(A)
1.  for j = 2 to A.length
2.   key = A[j]
3.   i = j - 1
4.   while i>0 and A[i]>key
5.   A[i+1] = A[i]
6.   i = i - 1
7.   A[i+1] = key

Proving Correctness—BubbleSort

BubbleSort(A) // A.length = n
(assume problem statement = that of InsertionSort)

1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

We need to show...
1.  … the loop invariant is true at the start of the first iteration (basis or

initialization),
2.  … the invariant remains true for the next k <= n iterations (inductive

hypothesis (IH) or maintenance), and
3.  …the algorithm has the correct result when the loop terminates.

Loop invariant:
At the start of each iteration i
of the for loop in lines 1-4,
the subarray A[1...i −1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

Proving Correctness—BubbleSort Base Case

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Loop invariant:
At the start of each iteration i
of the for loop in lines 1-4,
the subarray A[1...i −1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

Proving Correctness—BubbleSort IH

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Loop invariant:
At the start of each iteration i
of the for loop in lines 1-4,
the subarray A[1...i −1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

Proving Correctness—BubbleSort inductive step

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Loop invariant:
At the start of each iteration i
of the for loop in lines 1-4,
the subarray A[1...i −1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

Proving Correctness—BubbleSort Termination

BubbleSort(A)
1.  for i = 1 to n – 1
2.  for j = n downto i+1
3.  if A[j] < A[j-1]
4.  swap A[j] with A[j-1]

Loop invariant:
At the start of each iteration i
of the for loop in lines 1-4,
the subarray A[1...i −1] is in
sorted order with the (i−1)
smallest elements of A in
positions 1...i−1.

