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CMPU241 Analysis of Algorithms 

Day 4 
Proofs of Algorithm Correctness 

Using Loop Invariants 

To prove an algorithm is correct, you 
need to know how the algorithm 
transforms input to correct output. 
 
E.g., an algorithm to find the maximum value 
element in a set of totally ordered data is 
correct if its output is the largest number in 
the set.  

What outcome is correct if you are 
running a sorting algorithm on a set 
of comparable data elements? 

All the elements are in some specified 
ordering, commonly ascending order. 

A loop invariant proof generally starts by 
showing that the initial condition or basis fits 
some criteria, and argues that consecutive 
iterations of the loop uphold these criteria. We 
will use proof by induction on the number of 
loop iterations to prove our claims. 
Unlike most proofs by induction, algorithms 
terminate, resulting in the entire data set upholding 
the loop invariant to produce the correct result. 

The parts of the proof are: 
 
1.  State the loop invariant. 

 
2.  Show that the invariant holds at the start of the 1st 

iteration. 
 

3.  Assume the invariant holds up to some iteration k > 1 
(inductive hypothesis). 
 

4.  Show the actions that occur in iteration k lead to the 
invariant holding for the k+1st iteration (inductive step 
uses inductive hypothesis). 
 

5.  Argue that, at termination, the algorithm produces the 
desired result. 

  

 

       FindMax(A[1…n]) 
 
 
 
 

1.   max = A[1] 
2.   for ( i = 2;  i <=n;  i++ ) 
3.        if (A[i] > max) 
4.             max = A[i]  
5.   return max 

INPUT:      An array A of n comparable items 
 
OUTPUT:  The value of the maximum item in the array  

 Does this algorithm have variable running time on input arrays with 
different contents or orderings of size n ? 

 

 Give the line number of the basic operation.   € 

1
i= l

u

∑ = u − l +11
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n
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Loop invariant for Find-Max: 
 
Loop invariant:  At the start of each iteration k, max 
contains the largest value in A[1...k-1]. 
 
Base case:  k = 2. Since max is set to equal A[1] 
before the first iteration, max holds the largest 
value in A[1...k-1] = A[1...1] = A[1]. So the base 
case holds. 
 
Inductive hypothesis:  Assume the invariant holds 
through the beginning of iteration k, where            
2 < k < n, so max is the largest value in A[1...k-1]. 
 
 

Inductive Step (Maintenance):  Show the invariant holds 
at the end of iteration k, the beginning of iteration k
+1.  Show that max is the largest value in subarray 
A[1...k] at the beginning of iteration k+1. 
 

By the inductive hypothesis, we know that max is 
the largest value in A[1…k-1] at the start of iteration 
k.  In iteration k, the maximum element in A[1...k] is 
found by comparing max to the value in A[k]. Due to 
the total ordering on comparable items, max is 
either unchanged in this iteration because max >= 
A[k] or max is  set to A[k] because max < A[k].  In 
either case, at the beginning of iteration k+1, max is 
the largest value in A[1...k]. 

 
Termination:  The for loop ends when k = n+1.  At 
that point, max is the largest value in  

  A[1...(n+1)-1] = A[1...n].   
Therefore, at the end of the algorithm, the value of 
the maximum item in A[1...n] is returned and the 
algorithm is correct.        
 
QED 

Example: Sorting Problem 
The algorithmic problem known as sorting is defined as 
follows: 
 
INPUT:      An array A[1…n] of n totally ordered elements {a1, a2,..., an}
OUTPUT:  A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′} 

     such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′. 
 
Example instances of input for the sorting problem: 

 {Mike, Sally, Herbert, Tony, Jill}     
 {101, 111111, 1111, 100, 1010, 101010} 

 
Example instances of output for the given instances of the sorting 
problem above: 

 {Herbert, Jill, Mike, Sally, Tony}     
 {100, 101, 1010, 1111, 101010, 111111} 

 
 

 

       InsertionSort(A) 
 
 
 
 
 

1.    for ( j  = 2 to length[A] ) 
2.         key = A[j] 
3.          i = j – 1 
4.          while ( i > 0 and A[i] > key) 
5.                 A[i + 1] = A[i] 
6.             i = i - 1 
7.          A[i + 1] =  key 

INPUT:      An array A of n items {a1, a2,..., an} 
 
OUTPUT:  A permutation of the input array {a1ʹ′, a2ʹ′,..., anʹ′} 

    such that a1ʹ′≤ a2ʹ′≤...≤ anʹ′. 

Sorting Algorithm   

Does InsertionSort have best- and worst-case run times? 

Real-time Analysis of InsertionSort  
 

    InsertionSort(A)      times    

  1. for j = 2 to length[A]             n 

  2.       key = A[j]         n-1 

  3.       i = j - 1         n-1 

  4.       while i > 0 and A[i] > key  

             

  5.             A[i + 1] = A[i] 

             

  6.             i = i – 1 

                   

  7.       A[i + 1] = key                n-1    

€ 

t j
j= 2

n

∑

€ 

(t j −1)
j= 2

n

∑

(t j −1)
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n

∑



2/4/19

3

Analysis of InsertionSort  
 

         InsertionSort(A)       
c1  for j  = 2 to length[A] 
c2       key = A[j] 
c3       i = j - 1 
c4       while i > 0 and A[i] > key 
c5             A[i + 1] = A[i] 
c6    i = i - 1 
c7       A[i + 1] =  key 

•  Give an instance of 
best-case and worst-
case inputs. 

What is the real running time for the best case? 
       c1n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)   
    = (c1 + c2 + c3 + c4 + c7)n – (c2+ c3+ c4 + c7)  = an - b 
 
What is the real running time for the worst case? 
    Add up terms on last slide.  ( an2 + bn + c) 

Proving Correctness—Insertion Sort 

Loop invariant:   
At the start of each iteration 
of the for loop of lines 1-7, 
the subarray   A[1...j-1] 
consists of the elements 
originally in A[1...j-1], but in 
sorted order. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

We need to show...  
1.  …that the loop invariant is true at the start of the first iteration (base 

case or initialization), 
2.  … the invariant remains true for the next k < n iterations (inductive 

hypothesis (IHOP) or maintenance), and 
3.  …the algorithm has the correct result when the loop terminates. 

Proving Correctness—Base Case 

Base case (initialization):  When j = 2, A[1...j-1] has a single 
element and is therefore trivially sorted. 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—Inductive Hypothesis 

Inductive Hypothesis (IH): Assume the invariant holds through the 
beginning of the iteration where 2 < j = k < n. 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—Inductive Step 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Inductive Step (Maintenance):  Show the invariant holds at the end of the 
iteration when j = k, and the beginning of the next iteration when              
j = k+1. 
  

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—Inductive Step 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

When j = k, key = A[k]. By the IHOP, we know that the subarray A[1…k-1] is in 
sorted order.  In iteration k, each key to the left of A[k]: A[k-1], A[k-2], A[k-3]..., is 
moved one position to the right until either a value less than key is found or until 
k-1 values have been shifted right, when the value of key is inserted. Due to the 
total ordering on comparable data, key will be inserted in the correct position in the 
values A[1…k], so at the beginning of iteration k+1, the subarray A[1…k] will 
contain only the elements that were originally in A[1…k], but in sorted order.  
Therefore, the loop invariant holds at the start of iteration k+1. 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 
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Proving Correctness—Termination 

Loop invariant:   
Let j be the position of the 
current key in the array A. 
At the start of each iteration 
of the for loop, the subarray 
A[1...j-1] consists of the 
elements originally in    
A[1...j-1], but in sorted order. 

Termination:  The for loop ends when j = n+1.  By the IHOP, we have 
that the subarray A[1...n] is in sorted order.  Therefore, the entire 
array is sorted and the algorithm is correct.   QED 

Insertion-Sort(A) 
1.  for j = 2 to A.length 
2.    key = A[j]  
3.    i = j - 1  
4.    while i>0 and A[i]>key 
5.        A[i+1] = A[i] 
6.        i = i - 1 
7.    A[i+1] = key 

Proving Correctness—BubbleSort 

BubbleSort(A)    // A.length = n 
(assume problem statement = that of InsertionSort) 

1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.                swap A[j] with A[j-1] 

We need to show...  
1.  … the loop invariant is true at the start of the first iteration (basis or 

initialization), 
2.  … the invariant remains true for the next k <= n iterations (inductive 

hypothesis (IH) or maintenance), and 
3.  …the algorithm has the correct result when the loop terminates. 

Loop invariant:   
At the start of each iteration i 
of the for loop in lines 1-4, 
the subarray A[1...i −1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

Proving Correctness—BubbleSort Base Case 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Loop invariant:   
At the start of each iteration i 
of the for loop in lines 1-4, 
the subarray A[1...i −1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

Proving Correctness—BubbleSort IH 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Loop invariant:   
At the start of each iteration i 
of the for loop in lines 1-4, 
the subarray A[1...i −1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

Proving Correctness—BubbleSort inductive step 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Loop invariant:   
At the start of each iteration i 
of the for loop in lines 1-4, 
the subarray A[1...i −1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 

Proving Correctness—BubbleSort Termination 

BubbleSort(A)   
1.  for i  = 1 to n – 1 
2.       for j = n downto i+1 
3.            if A[j] < A[j-1] 
4.               swap A[j] with A[j-1] 

Loop invariant:   
At the start of each iteration i 
of the for loop in lines 1-4, 
the subarray A[1...i −1] is in 
sorted order with the (i−1) 
smallest elements of A in 
positions 1...i−1.  
 


