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CMPU241 Analysis of 
Algorithms 

 

Optimal Comparison-Based 
Sorting Algorithms 

Sorting Algorithms (Ch. 6 - 8) 
Slightly modified definition of the sorting problem:

input: A collection of n data items <a1,a2,...,an> where  
           data item ai has a key, ki, drawn from a linearly 

ordered set (e.g., ints, chars)
 
output: A permutation (reordering)  <a'1,a'2,...,a'n>  of the    
          input sequence such that k1 ≤ k2 ≤ ...≤ kn

•  In practice, one usually sorts objects according to their key (the 
non-key data is called satellite data.)

•  If the records are large, we may sort an array of pointers based on 
some key associated with each record.

Sorting Algorithms 

•  A sorting algorithm is comparison-based if the only operation we 
can perform on keys is to compare them. 

•  A sorting algorithm is in place if only a constant number of 
elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

Insertion Sort     n2 

     n2           n 

       yes


Merge Sort 

    nlgn          nlgn        nlgn   

no


Heap Sort        nlgn          nlgn        nlgn          yes


Quick Sort        n2           nlgn        nlgn           yes



  worst-case average-case best-case      in place?

Heap-Sort (Chapter 6) 

In order to understand heap-sort, you need to understand 
binary trees.  

The algorithm doesn't use a data structure for nodes as 
you might be familiar with when working with binary trees.

Instead, it uses an array to abstract away from the 
complexity of linked binary trees.  In so doing, the 
algorithm has a fast run time with low-cost operations: 
swapping the values in an array, like Insertion-Sort and 
Bubble-Sort. 

Binary Trees 
binary tree
•  A rooted tree in which 

each internal node has 
at most 2 children

complete binary tree
•  Each level of the binary 

tree is full.

Binary Trees 

Some binary tree notation:
Node at top is root of tree.
Nodes with no subtrees are leaves of tree.
Nodes with one or more subtrees are internal nodes.
The depth of a node v is the number of edges from node v 
to the tree's root node. A root node has a depth of 0.
The height of a node v is the number of edges on the 
longest path from node v to a leaf. A leaf node has a height 
of 0.
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Heaps 

heap 
•  A heap is a complete binary tree, with the exception 

that it may be missing only the rightmost leaves on 
the bottom level.

We say the bottom level is left-filled. 

•  Each node contains a key and the keys are some  
totally ordered, comparable type of data.  

Heapsort 

Imaginary nodes are numbered using level ordering. 

A heap is represented with an array 
•  root is A[1]
•  for element A[i]

- left child is in position A[2i]
- right child is in position A[2i + 1]
- parent is in A[⎣i/2⎦]

Variables used for the array implementation of a heap
•  heapsize is number of elements in heap
•  length is number of positions in array Note that current

length of the array 
may be greater than 

current heapsize.

1
2 3

4 5 6 7

8 9 10 11

Max-Heap

Max-heap property:  A[Parent(i)] ≥ A[i]

In the array representation of a max-heap, the root of the tree
is in A[1].  Given an index i of a node, 

Parent(i) LeftChild(i) RightChild(i)
return (⎣i/2⎦)             return (2i)                 return (2i + 1)

1     2    3    4    5    6    7   8   9  10  11  : index
20  18    9   11  10   7    1    2   4    5   3 : keys
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765

11 10

n = 11
height of heap A = 3

A

Max-heaps are 
used for 
sorting data 
and for priority 
queues.

Min-Heap 

Min-heap property:  A[Parent(i)] ≤ A[i]

In the array representation of a min-heap, the root of the tree
is in A[1], and given the index i of a node, 

Parent(i) LeftChild(i) RightChild(i)
 return (⎣i/2⎦)              return (2i)                return (2i + 1)

 2     3      5     4    6     9   11  10  15  20  18
1     2     3     4     5    6    7    8    9  10   11     :  index

:  keys
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A

Min-heaps are 
used for 
priority queues 
in event-driven 
simulators.

Creating a Heap: Build-Max-Heap 
•  Observation: Leaves are already trivial max-heaps.   

 Elements A[(⎣n/2⎦ + 1) ... n] are all leaves. 
 
•  Start at parents of leaves...then go to grandparents of 

leaves...moving larger values up the tree. 

Build-Max-Heap(A)             
1.  for i = ⎣A.length/2⎦ downto 1
2.      Max-Heapify(A, i)

Running Time of Build-Max-Heap 
•  About n/2 calls to Max-Heapify  (O(n) calls) 

Max-Heapify:  Maintaining the Heap Property
 
•  Precondition:  subtrees rooted at the left and right children 

of A[i],  A[2i] and A[2i + 1] are max-heaps (i.e., they obey 
the max-heap property)  

•  ...but subtree rooted at A[i] might not be a max-heap (that 
is, A[i] may be smaller than its left and/or right child) 

 

•  Postcondition: Max-Heapify will cause the value at A[i] to 
"float down" or "sink" in the heap until the subtree rooted at 
A[i] becomes a heap. 
 

•  In a totally unheapified array, execution would start at the 
first parent node of a leaf. 
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Max-Heapify:  Maintaining the Max-Heap Property

Max-Heapify(A, i) 
1.  left = 2i    
2.  right = 2i + 1   /* indices of left & right children of A[i] */ 
3.  largest = i       /* value in parent node */     
4.  if left <=  A.heap-size and A[left] > A[i] 
5.      largest = left 
6.  if right <=  A.heap-size and A[right] > A[largest] 
7.    largest = right 
8.   if  largest != i 
9.        swap(A[i], A[largest]) 
10.      Max-Heapify(A, largest) /* continue heapifying to the leaves */ 

Precondition: the subtrees rooted at 2i and 2i+1 are max-heaps 

Max-Heapify:  Running Time
Running Time of Max-Heapify 

•  every line is θ(1) time except the recursive call 

•  in worst-case, last level of binary tree is half empty and the 
sub-tree rooted at left child of root has size at most (2/3)n. 
Note that in a complete binary tree (CBT) the subtrees to 
left and right would be equal size. 

We get the recurrence     T(n) <= T(2n/3) + θ(1) 

which, by case 2 of the master theorem, has the solution 

                   T(n) = θ(lgn) 

Max-Heapify takes O(h) time when node A[i] has height h in 
the heap.  The height h of a tree is the longest root to leaf 
path in the tree.     h = O(lgn) 

Creating a Heap: Build-Max-Heap 
•  Observation: Leaves are already max-heaps.   

     Elements A[(⎣n/2⎦ + 1) ... n] are all leaves. 
 
•  Start at parents of leaves...then go up to grandparents of 

leaves...etc. 

Build-Max-Heap(A)
1. A.heapsize = A.length              
2. for i = ⎣A.length/2⎦ downto 1
3.  Max-Heapify(A, i)

Running Time of Build-Max-Heap 
•  About n/2 calls to Max-Heapify  (O(n) calls) 

Correctness of Build-Max-Heap 
•  The entire array A meets the Max-Heap properties. 

Correctness of Build-Max-Heap
Loop invariant:  At the start of each iteration i of the for loop, each node 
i + 1, i + 2, ..., n is the root of a max-heap.

•  Initialization:  i = ⎣n/2⎦.  Each node ⎣n/2⎦ + 1, ⎣n/2⎦ + 2, ... n is a leaf, 
trivially satisfying the max-heap property. 

•  Inductive hypothesis: At the start of iteration k <= ⎣n/2⎦  where k >= 1, 
the subtrees of k are the roots of max-heaps 

•  Inductive step (maintenance): During iteration k, Max-Heapify is called 
on node k. By the IH, the left and right subtrees of k are max-heaps. 
When Max-Heapify is called on node k, the value in node k is “floated 
down” in its subtree until its value is correctly positioned in the max-heap 
rooted at k. 

Build-Max-Heap(A)
1. A.heapsize = A.length              
2. for i = ⎣A.length/2⎦ downto 1
3.  Max-Heapify(A, i)

Correctness of Build-Max-Heap

Termination: at termination, i = 0.  By the loop 
invariant, nodes 1, 2, ...,n are the roots of max-
heaps.  Therefore the algorithm is correct.

Build-Max-Heap(A)
1. A.heapsize = A.length              
2. for i = ⎣A.length/2⎦ downto 1
3.  Max-Heapify(A, i)

Loop invariant:  At the start of each iteration i of the for 
loop, each node i + 1, i + 2, ..., n is the root of a max-
heap.

Heap Sort

HeapSort(A)
1. Build-Max-Heap(A)   /* rearrange elements to form max heap */
2. for i = A.length downto 2 do 
3.     swap A[1] and A[i]        /* puts max in ith array position */
4.    A.heapSize =  A.heapSize - 1
5.     Max-Heapify(A,1)  /* restore heap property */      

Input:    An n-element array A (unsorted).
Output: An n-element array A in sorted order, smallest to largest.
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Heap Sort

HeapSort(A)
1. Build-Max-Heap(A)   /* rearrange elements to form max heap */
2. for i = A.length downto 2 do 
3.     swap A[1] and A[i]        /* puts max in ith array position */
4.    A.heapSize =  A.heapSize - 1
5.     Max-Heapify(A,1)     /* restore heap property */            

 

Input:    An n-element array A (unsorted).
Output: An n-element array A in sorted order, smallest to largest.

Build-Max-Heap(A) takes 
    = O(nlgn) time 
      
Max-Heapify(A,1) takes 
    O(lg|A|) = O(lgn) time

Running time of HeapSort
•   1 call to Build-Max-Heap()
    ⇒  O(nlgn) time
•   n-1 calls to Max-Heapify()
   each takes O(lgn) time
    ⇒  O(nlgn) time

Heapsort Time and Space Usage

•  An array implementation of a heap uses O(n) space, 
one array element for each node in heap

•  Heapsort uses O(n) space and is in place, meaning at 
most constant extra space beyond that taken by the 
input is needed

•  Running time is as good as merge sort, O(nlgn) in worst 
case.

Heaps as Priority Queues
Definition:  A priority queue is a data structure for maintaining a set S of 

elements, each with an associated key.  A max-priority-queue gives priority 
to keys with larger values and supports the following operations:

1.  insert(S, x) inserts the element x into set S. 

2.  max(S) returns element of S with largest key. 

3.  extract-max(S) removes and returns element of S with largest 
     key.  

4.  increase-key(S,x,k) increases the value of element x's key to new 
     value k (assuming k is at least as large as current key's value).

Priority Queues:  Application for Heaps

Initialize PQ by running Build-Max-Heap on an array A.   
 

A[1] holds the maximum value after this step.   
 

Heap-Maximum(A) - returns value of A[1]. 
Heap-Extract-Max(A) - Saves A[1] and then, like Heap-Sort, puts item 

in A[heapsize] at A[1], decrements heapsize, and uses Max-
Heapify(A, 1) to restore heap property.  

An application of max-priority queues is to schedule jobs on a shared 
processor.  Need to be able to 
    check current job's priority   Heap-Maximum(A)
    remove job from the queue   Heap-Extract-Max(A)
    insert new jobs into queue    Max-Heap-Insert(A, key)
    increase priority of jobs    Heap-Increase-Key(A,i,key)

Inserting Heap Elements

Max-Heap-Insert(A, key)
1. A.heapsize = A.heapsize +1              
2. i = A.heapsize 
3. while i  > 1 and A[parent(i)] < key     
4.        A[i] = A[parent(i)]
5.         i = parent(i)
6. A[i] = key

Inserting an element into a max-heap:
•  increment heapsize and "add" new element to the highest numbered 

position of array
•  walk up tree from new leaf to root, swapping values.  Insert input key at 

node in which a parent key larger than the input key is found

Running time of Max-Heap-Insert:  O(lgn)
•  time to traverse leaf to root path (height = O(lgn))

Here, values 
are moved up 
to where they 
should be in a 
max-heap.

Heap-Increase-Key
Heap-Increase-Key(A, i, key) - If key is larger than 
current key at A[i], moves node with increased key up heap 
until heap property is restored by exchanging it with its 
smaller parent until parent key is > A[i]. 
 
An application for a min-heap priority queue is an event-
driven simulator, where the key is an integer representing the 
number of seconds (or other discrete time unit) from time 
zero (starting point for simulation). 
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Sorting Algorithms 

•  A sorting algorithm is comparison-based if the only operation we 
can perform on keys is to compare them. 

•  A sorting algorithm is in place if only a constant number of 
elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

Insertion Sort     n2 

     n2           n 

       yes


Merge Sort 

    nlgn          nlgn        nlgn   

no


Heap Sort        nlgn          nlgn        nlgn          yes


Quick Sort        n2           nlgn        nlgn           yes



  worst-case average-case best-case      in place?

Addendum 

Build-Max-Heap - Tighter bound


Build-Max-Heap(A)
1. A.heapsize = A.length              
2. for i ← ⎣length(A)/2⎦ downto 1
3.   Max-Heapify(A, i)

Proof of tighter bound (O(n)) relies on following theorem:  
 

Theorem 1:  The number of nodes at height h in a max-
heap ≤ ⎡n/2h+1⎤  
 
  Height of a node v = largest number of edges from v to a leaf. 
  Depth of a node v = number of edges from node v to the root. 
 
Tight analysis relies on the properties that an n-node heap has height at 
least floor of lgn and at most the ceiling of n/2h+1 nodes at height h.  The 
time for max-heapify to run at a node varies with the height of the node in 
the tree, and the heights of most nodes are small. 

 

Lemma 1:  The number of internal nodes in a proper 
binary tree is equal to the number of leaves in the   
tree - 1. 
 

Defn:  In a proper binary tree (pbt), each node has exactly 0 or 2 children. 
 
Let I be the number of internal nodes and let L be the number of leaves in 
a proper binary tree.  The proof is by induction on the height of the tree. 
 
Basis:  h=0. I  = 0 and L  = 1.  I  = L  - 1 = 1 - 1 = 0, so the lemma holds. 
 
Inductive Step:  Assume lemma is true for proper binary trees of height h 
(IHOP) and show for proper binary trees of height h + 1. 
 
Consider the root of a proper binary tree T of height h+1.  It has left and 
right subtrees (L and R) of height at most h.   
IT = (IL + IR) + 1 = (LL - 1) + (LR - 1) + 1 (by the IHOP) =  
(LL + LR -2) + 1 = LL + LR -1.  Since LT = LL + LR we have that IT = LT - 1. 
QED 

T

T1 T2

#Internal nodes in T    =     #Internal nodes in T1 + #Internal nodes in T2 + 1




 

        =     (#Leaves in T1 - 1) + (#Leaves in T2 -1) + 1  (IHOP)




 

        =     (#Leaves in T1 + #Leaves in T2) - 2 + 1




 

        =

    #Leaves in T - 1    (by observation that # of




 

 

 

 

       leaves in T is equal to # 




 

 

 

 

       leaves in its subtrees.)



Diagramatic proof of Lemma 1


Theorem 1:  The number of nodes at level h in a max-
heap ≤ ⎡n/2h+1⎤ 
 

Let h be the height of the heap.  Proof is by induction on h, the height of 
each node.  The number of nodes in the heap is n. 
 
Basis:  Show the theorem holds for nodes with h = 0.  The tree leaves 
(nodes at height 0) are at depths H and H-1. 
 
Let x be the number of nodes at depth H, that is, the number of leaves 
assuming that n is a complete binary tree, i.e., that n = 2h+1-1 
 
Note that n - x is odd, because a complete binary tree has an odd number 
of nodes (1 less than a power of 2).   
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Theorem 1:  The number of nodes at level h in a max-
heap ≤ ⎡n/2h+1⎤ 
 
We have that n is odd and x is even, so all nodes have siblings (all internal 
nodes have 2 children.)  By Lemma 1, the number of internal nodes = the 
number of leaves - 1. 
 
So n = # of nodes = # of leaves + # internal nodes = 2(# of leaves) - 1.  
Thus, the #of leaves = (n+1)/2 = ⎡n/20+1⎤ because n is odd. 
 
Thus, the number of leaves = ⎡n/20+1⎤ and the theorem holds for the base 
case. 
  

Theorem 1:  The number of nodes at level h in a max-
heap ≤ ⎡n/2h+1⎤ 
 
Inductive step:  Show that if thm 1 holds for height h-1, it holds for h. 
 
Let nh be the number of nodes at height h in the n-node tree T. 
 
Consider the tree T’ formed by removing the leaves of T.  It has n’ = n - n0 
nodes.  We know from the base case that n0 = ⎡n/2⎤ , so n’ = n - ⎡n/2⎤ =   
⎣n/2⎦. 
 
Note that the nodes at height h in T would be at height h-1 if the leaves of 
the tree were removed--i.e., they are at height h-1 in T’.  Letting n’h-1 
denote the number of nodes at height h-1 in T’, we have nh = n’h-1  
 
nh = n’h-1 ≤ ⎡n’/2h⎤ (by the IHOP) = ⎡⎣n/2⎦/2h⎤ ≤ ⎡(n/2)/2h⎤ = ⎡n/2h+1⎤. 

Since the time of Max-Heapify when called on a node of height h is O(h), 
the time of B-M-H is 
 
 
 
 
and since the last summation turns out to be a constant, the running time 
is O(n). 
 
Therefore, we can build a max-heap from an unordered array in linear 
time. 
 

€ 

n
2h+1

h= 0

lgn

∑ O(h) =O(n h
2hh= 0

lgn

∑ )


