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Analysis of Divide-and-Conquer Algorithms

The divide-and-conquer paradigm (Ch.2)

« divide the problem into a number of subproblems

+ conquer the subproblems by solving them

* combine the subproblem solutions to get the solution to the problem

add all these steps at the first level to get recurrence relation for T(n)

Example: Merge-Sort: an optimal sorting algorithm

« divide the n-element input sequence to be sorted into two
n/2-element subsequences.

* conquer the subproblems recursively using merge sort.

* combine the resulting two sorted n/2-element sequences by
merging.

Analyzing Merge-Sort
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Because Ign + 1 is the number of steps it takes
to divide n by 2 until the size of the result is <= 1

Why are there Ign + 1 levels?

How long does it take to find the midpoint of an array? D(n) = 6(1)

Merge-Sort (A r Merge (A r
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The Merge subroutine takes linear 8. i=4=1
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11. A[k] = L[i]
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Recurrence for worst-case running time for Merge-Sort
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Recurrence for worst-case running time for Merge-Sort

at(n/b) + D(n) + C(n)

°a =2 (two subproblems)
* n/b =n/2 (each subproblem has size approx n/2)

 D(n) =0(1) (just compute midpoint of array)

 C(n) =0O(n) (merging can be done by scanning sorted subarrays)

Recursion Tree for Merge-Sort
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Recurrence tree for Merge-Sort
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