2/11/19

Analysis of Divide-and-Conquer Algorithms

The divide-and-conquer paradigm (Ch.2)

« divide the problem into a number of subproblems

+ conquer the subproblems by solving them

* combine the subproblem solutions to get the solution to the problem

add all these steps at the first level to get recurrence relation for T(n)

Example: Merge-Sort: an optimal sorting algorithm

« divide the n-element input sequence to be sorted into two
n/2-element subsequences.

* conquer the subproblems recursively using merge sort.

* combine the resulting two sorted n/2-element sequences by
merging.

Analyzing Merge-Sort

2 8 1 s5|[4 3 7 ¢

Divide
(Ign +1 levels)

[2 8|[t s][a 3][7 ¢
2] 8] [2] [s] [a] [3][7] [¢]

Because Ign + 1 is the number of steps it takes
to divide n by 2 until the size of the result is <= 1

Why are there Ign + 1 levels?

How long does it take to find the midpoint of an array? D(n) = 6(1)

Merge-Sort (A r Merge (A r
1.if p < r then 1. n, = g-p+l; n, = r-q;
2. q=|pr)/2] 2. Create arrays
3. Merge-Sort(A,p,q) L1 n,+1] and
4. Merge-Sort(A,qg+l,r) R 1' o 1+1
5. Merge(a,p,q,1) [1.. gt
3. for i =1 ton,
4. L[i] = A[p+i-1]
Initial call: 5. fori=1 ton
. 2
Merge-sort(A,1, length(a)) 6. R[i]= A[q+i]
7. Lln;#1] = Rn,+1] = ®
The Merge subroutine takes linear 8. i=4=1
time to merge n elements that are - 1=3=
divided into two sorted arrays of n/2 9. for k =p tor
elements each. 10. if L[i] = R[]j]
11. A[k] = L[i]
12. i =i+l
13. else A[k] = R[j]
14. 3 = 341
Analyzing Merge-Sort
[1 2 3 4 5 6 7 8]
" [1 2 5 8][3 4 6 7
erge
(Ign +1 levels)
2 sll1 s/ [3 4] [6 7|

(2] [&] [1] [s] [4] [5][7] [6]

C(n)=6(n)

- [
2T(n/2) + 6(n)

ifn=1

otherwise

Recurrence for worst-case running time for Merge-Sort

Analyzing Merge-Sort

ifn=1
otherwise

e
7 { 2T(n/2) + ()

Recurrence for worst-case running time for Merge-Sort

at(n/b) + D(n) + C(n)

°a =2 (two subproblems)
* n/b =n/2 (each subproblem has size approx n/2)

 D(n) =0(1) (just compute midpoint of array)

 C(n) =0O(n) (merging can be done by scanning sorted subarrays)

Recursion Tree for Merge-Sort

| i

h =lgn + 1 levels

cn/4 cn/4

PANAN

c c c c

c
Tin) = { 2T(n/2) +cn

cn

cn

CN/2 — CI

cn/4 cn/4

/

c

ifn=1

el C11

VAN

c [———)

otherwise

Recurrence tree for Merge-Sort

cnlgn +cn

