All-Pairs Shortest Paths (Ch. 25)

The all-pairs shortest path problem (APSP)

input: a directed graph G = (V, E) with edge weights

goal: find a minimum weight (shortest) path between every pair of vertices in V

Can we do this with algorithms we've already seen?

Solution 1: run Dijkstra's algorithm V times, once with each $v \in V$ as the source node (requires no negative-weight edges in E)

If G is dense with an array implementation of Q

 $O(V \cdot V^2) = O(V^3)$ time

If G is sparse with a binary heap implementation of $\ensuremath{\mathbf{Q}}$

 $O(V \cdot ((V + E) \log V)) = O(V^2 \log V + V E \log V)$ time

All-Pairs Shortest Paths

Solution 2: run the Bellman-Ford algorithm V times (negative edge weights allowed), once from each vertex.

 $O(V^2E)$, which on a dense graph is $O(V^4)$

Solution 3: Use an algorithm designed for the APSP problem.

E.g., Floyd's Algorithm

introduces a dynamic programming technique that uses adjacency matrix representation of G = (V, E)

Warshall's Transitive Closure Algorithm

Input: Adjacency matrix A of G as matrix of 1s and 0's Output: Transitive Closure or reachability matrix $R^{(n)}$ of G

Assumes vertices are numbered 1 to |V|, |V| = n and there are no edge weights. Finds a series of boolean matrices R⁽⁰⁾, ..., R⁽ⁿ⁾

Solution for $R^{(n)}$:

Define $r_{ii}^{(k)}$ as the element in the ith row and jth column to be 1 iff there is a path between vertices i and j using only vertices numbered \leq k. R⁽⁰⁾ = A, original adjacency matrix (only 1's are direct edges) $R^{\left(n\right) }$ the matrix we want to compute

 $R^{(k)}$'s elements are: $R^{(k)}[i, j] = r_{ij}^{(k)} = r_{ij}^{(k-1)} \lor r_{ik}^{(k-1)} \land r_{ki}^{(k-1)}$

Warshall's Algorithm

 $R_{ii}^{(0)} = 0$

 $= \infty$

if i = j

if i != i

Warshall (A[1...n,1...n])

3. for
$$k = 1$$
 to n do

5. for
$$j = 1$$
 to n do

6.
$$R_{ij}^{(k)} = R_{ij}^{(k-1)} V R_{ik}^{(k-1)} \wedge R_{kj}^{(k-1)}$$

7. return
$$R^{(n)}$$

If an element r_{ij} is 1 in $R^{(k\cdot 1)}$, it remains 1 in R(k). If an element r_{ij} is 0 in $R^{(k\cdot 1)}$, it becomes a 1 iff the element in row i and column k and the element in column j, row k are both 1's in R(k-1).

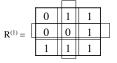
Warshall's Algorithm

$$R^{(0)} = A = \begin{array}{|c|c|c|c|c|} \hline & 0 & 1 & 1 \\ \hline & 0 & 0 & 1 \\ \hline & 1 & 0 & 0 \\ \hline \end{array}$$

Matrix R⁽⁰⁾ contains the nodes reachable in one hop

For R⁽¹⁾, there is a 1 in row 3, col 1 and col 2, row 1, so put a 1 in position 3,2. Also, there is a 1 in row 3, col 1, and col 3, row 1 so put a 1 in position 3,3

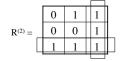
Warshall's Algorithm



Matrix R(1) contains the nodes reachable in one hop or on paths that go through vertex 1.

For R⁽²⁾, there is no change because 1 can get to 3 through 2 but there is already a direct path between 1 and 3.

Warshall's Algorithm



Matrix R(2) contains the nodes reachable in one hop or on paths that go through vertices 1 or 2.

For $R^{(3)}$, there is a 1 in row 1, col 3 and col 1, row 3, so put a 1 in position 1,1. Also, there is a 1 in row 2, col 3 and col 1, row 3, so put a 1 in position 2,1. Also, there is a 1 in row 2, col 3 and col 2, row 3, so put a 1 in position 2,2.

Warshall's Algorithm

$$R^{(3)} = \begin{array}{c|cccc} & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ \hline & 1 & 1 & 1 \\ \end{array}$$

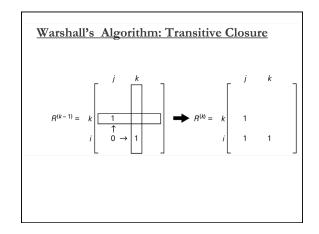
Matrix R⁽³⁾ contains the vertices reachable in one hop or on paths that go through vertices 1, 2, and 3.

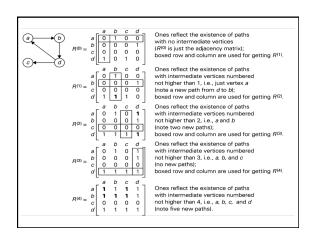
Warshall's Algorithm · Main idea: a path exists between two vertices i, j, iff there is an edge from i to j; or there is a path from i to j going through vertex 1; or there is a path from i to j going through vertex 1 and/or 2; or there is a path from i to j going through vertex 1, 2, and/or 3; or · there is a path from i to j going through any of the other vertices $\begin{matrix} R_1 \\ 0 & 0 & 1 & 0 \end{matrix}$ $\begin{matrix} R_2 \\ 0 \ 0 \ 1 \ 0 \end{matrix}$

0000

0 0 0 0

0 0 1 0 1 0 1 1





Warshall's Algorithm Warshall (A[1...n,1...n]) 1. n = rows[A]Time efficiency? 2. R⁽⁰⁾ = A 3. for k = 1 to n do Space efficiency? for i = 1 to n do 4. 5. for j = 1 to n do $R_{ij}^{(k)} = R_{ij}^{(k-1)} V R_{ik}^{(k-1)} \Lambda R_{ki}^{(k-1)}$ 6. 7. return R⁽ⁿ⁾

Floyd's APSP Algorithm

Input: Adjacency matrix A Output: Shortest path matrix $D^{(n)}$ and predecessor matrix $\Pi^{(n)}$

Observation: When G contains no negative-weight cycles, all shortest paths consist of at most n-1 edges

Assumes vertices are numbered 1 to |V|

Relies on the Optimal Substructure Property:

All sub-paths of a shortest path are shortest paths.

Solution for D:

Define $D^{(k)}[i,j]=d_{ij}{}^{(k)}$ as the minimum weight of any path from vertex i to vertex j, such that all intermediate vertices are in $\{1,2,3,...,k\}$

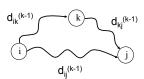
 $\mathsf{D}^{(0)} = \mathsf{A}, \text{ original adjacency matrix (only paths are single edges)}$

 $D^{(n)}$ the matrix we want to compute

 $D^{(k)}$'s elements are: $D^{(k)}[i, j] = d_{ij}^{(k)} = min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$

Recursive Solution for D(k)

$$D^{(k)}[i, j] = d_{ii}^{(k)} = \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})$$



The only intermediate nodes on the paths from i to j, i to k or k to j are in the set of vertices $\{1,\,2,\,3,\,...,\,k-1\}$.

If k is included in shortest i to j path, then a shortest path has been found that includes k.

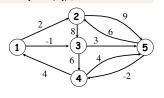
If k is not included in shortest i to j path, then the shortest path still only includes vertices in the set 1...k-1.

Initial Matrix of Path Lengths

Use adjacency matrix A for G = (V, E):

$$A[i,j] = a_{ij} = \begin{cases} w(i,j) & \text{if } (i,j) \in E \\ 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

	1	2	3	4	5
1	0	2	-1	8	8
2	8	0	8	8	9
3	8	∞	0	6	3
4	4	∞	8	0	4
5	8	6	8	-2	0



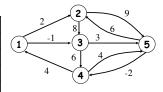
Initial Matrix of Predecessors

Use adjacency matrix Π to keep track of predecessors:

$$\pi^{(0)}_{ij} =$$

$$\begin{cases} i & \text{if } i \neq j \text{ and } w(i,j) < \infty \\ \emptyset & \text{if } i = j \text{ or } w(i,j) = \infty \end{cases}$$

	1	2	3	4	5
1	Ø	1	1	Ø	Ø
2	Ø	Ø	2	Ø	2
3	Ø	Ø	Ø	3	3
4	4	Ø	Ø	Ø	4
5	Ø	5	Ø	5	Ø



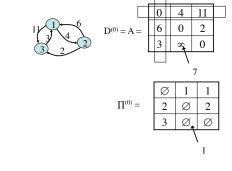
 π_{ij} is predecessor of j on some shortest path from i

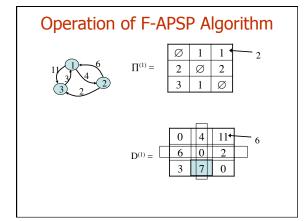
Floyd's APSP Algorithm

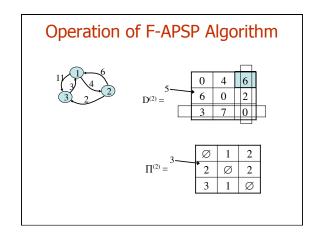
Floyd-Warshall-APSP(A)

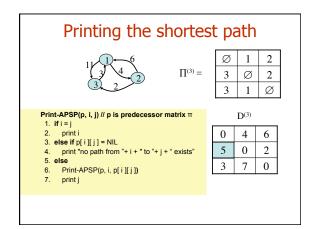
 $\begin{array}{lll} 1. & n = rows[A] \\ 2. & D^{(0)} = A \\ 3. & for k = 1 to n \\ 4. & for i = 1 to n \\ 5. & for j = 1 to n \\ 6. & if \ d_{ij}^{(k)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ 7. & d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ 8. & \pi_{ij}^{(k)} = \pi_{kj}^{(k-1)} \\ 9. & else \ \pi_{ij}^{(k)} = \pi_{ij}^{(k-1)} \\ 10. & return \ D^{(n)} \end{array}$

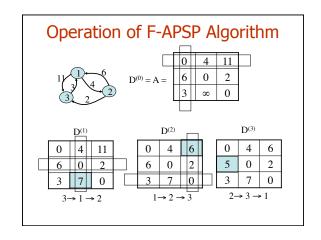
Operation of F-APSP Algorithm

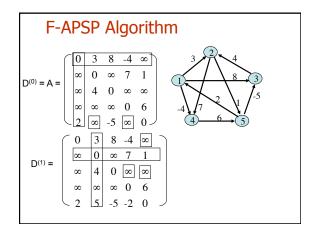


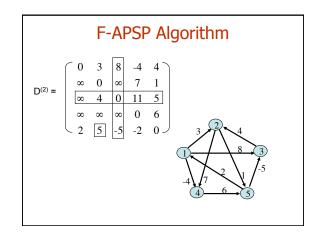


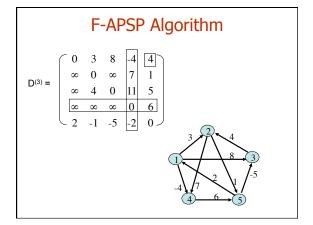


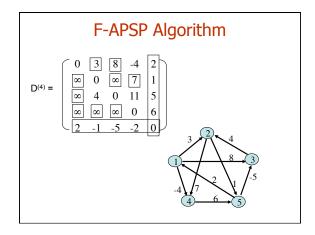


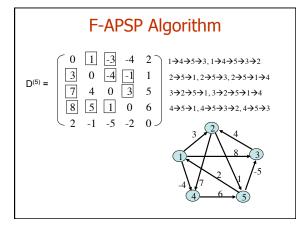












Running Time of Floyd's-APSP

Lines 3 – 6: |V³| time for triply-nested **for** loops

Overall running time = = $\theta(V^3)$

The code is tight, with no elaborate data structures and so the constant hidden in the $\theta\text{-}notation$ is small.