
4/18/17

1

The all-pairs shortest path problem (APSP) 
input: a directed graph G = (V, E) with edge weights 
goal:   find a minimum weight (shortest) path between every pair  of 

vertices in V 
Can we do this with algorithms we’ve already seen? 

All-Pairs Shortest Paths (Ch. 25) 

Solution 1:  run Dijkstra’s algorithm V times, once with each v ∈ V as the 
source node (requires no negative-weight edges in E) 

 If G is dense with an array implementation of Q 
  O(V ⋅ V2)  = O (V3) time 
 If G is sparse with a binary heap implementation of Q 
  O(V ⋅ ((V + E) logV)) = O(V2logV + VElogV) time 

All-Pairs Shortest Paths 
Solution 2:  run the Bellman-Ford algorithm V times (negative edge 
weights allowed), once from each vertex. 

 O(V2E), which on a dense graph is O(V4) 

Solution 3:  Use an algorithm designed for the APSP problem. 
 
 E.g., Floyd's Algorithm 

 introduces a dynamic programming technique that 
 uses adjacency matrix representation of G = (V, E) 

Warshall's Transitive Closure Algorithm 
Input:  Adjacency matrix A of G as matrix of 1s and 0's 
Output:  Transitive Closure or reachability matrix R(n) of G  

Solution for R(n):  
Define rij

(k) as the element in the ith row and jth column to be 1 iff there is 
a path between vertices i and j using only vertices numbered ≤ k.  
R(0)  = A, original adjacency matrix (only 1's are direct edges) 
R(n)  the matrix we want to compute  

R(k)’s elements are: R(k)[i, j] = rij
(k) = rij

(k-1) ∨ rik
(k-1) ∧ rkj

(k-1) 

Assumes vertices are numbered 1 to |V|, |V| = n and there are no edge 
weights.  Finds a series of boolean matrices R(0), …, R(n) 

Warshall's Algorithm 

Warshall (A[1…n,1…n]) 
1.  n = rows[A] 
2.  R(0) = A 
3.  for k = 1 to n  do 
4.       for i = 1 to n do 
5.             for j = 1 to n do 

6.                  Rij
(k) = Rij

(k-1) V Rik
(k-1) ∧ Rkj

(k-1)  
7.  return R(n)  
 

If an element rij is 1 in R(k-1), it remains 1 in R(k). 
If an element rij is 0 in R(k-1), it becomes a 1 iff the element 
in row i and column k and the element in column j, row k are 
both 1's in R(k-1). 

Rij
(0) = 0       if i = j

        = ∞      if i != j

Warshall's Algorithm 

 1

 2 3

0 1 1
0 0 1
1 0 0

R(0) = A =

Matrix R(0) contains the nodes reachable in one hop 
 
For R(1), there is a 1 in row 3, col 1 and col 2, row 1, 
so put a 1 in position 3,2.  Also, there is a 1 in row 3, 
col 1, and col 3, row 1 so put a 1 in position 3,3 

Warshall's Algorithm 

 1

 2 3

0 1 1
0 0 1
1 1 1

R(1) =

Matrix R(1) contains the nodes reachable in one hop or 
on paths that go through vertex 1. 
 
For R(2), there is no change because 1 can get to 3 
through 2 but there is already a direct path between 1 
and 3.  



4/18/17

2

Warshall's Algorithm 

 1

 2 3

0 1 1
0 0 1
1 1 1

R(2) =

Matrix R(2) contains the nodes reachable in one hop or 
on paths that go through vertices 1 or 2. 
 
For R(3), there is a 1 in row 1, col 3 and col 1, row 3, 
so put a 1 in position 1,1.  Also, there is a 1 in row 2, 
col 3 and col 1, row 3, so put a 1 in position 2,1.  Also, 
there is a 1 in row 2, col 3 and col 2, row 3, so put a 1 
in position 2,2.  

Warshall's Algorithm 

 1

 2 3

1 1 1
1 1 1
1 1 1

R(3) =

Matrix R(3) contains the vertices reachable in one hop 
or on paths that go through vertices 1, 2, and 3. 

Warshall's Algorithm 

Warshall (A[1…n,1…n]) 
1.  n = rows[A] 
2.  R(0) = A 
3.  for k = 1 to n  do 
4.       for i = 1 to n do 
5.             for j = 1 to n do 

6.                  Rij
(k) = Rij

(k-1) V Rik
(k-1) ∧ Rkj

(k-1)  
7.  return R(n)  
 

Time efficiency? 

Space efficiency?



4/18/17

3

Floyd's APSP Algorithm 
Input:  Adjacency matrix A 
Output:  Shortest path matrix D(n) 
    and predecessor matrix Π(n)  

Relies on the Optimal Substructure Property: 
  All sub-paths of a shortest path are shortest paths. 

Observation:  When G contains no 
negative-weight cycles, all shortest 
paths consist of at most n – 1 edges 

Solution for D:  
Define D(k)[i, j] = dij

(k) as the minimum weight of any path from vertex i to 
vertex j, such that all intermediate vertices are in {1, 2, 3, ..., k}   
D(0)  = A, original adjacency matrix (only paths are single edges) 
D(n)  the matrix we want to compute  
D(k)’s elements are: D(k)[i, j] = dij

(k) = min(dij
(k-1), dik

(k-1) + dkj
(k-1) ) 

Assumes vertices are numbered 1 to |V| 

Recursive Solution for D(k) 

ji

k

dij
(k-1) 

dik
(k-1) dkj

(k-1) 

The only intermediate nodes on the paths from i to j, i to k or k to j are in 
the set of vertices {1, 2, 3, ..., k-1}.   
If k is included in shortest i to j path, then a shortest path has been found 
that includes k.   
If k is not included in shortest i to j path, then the shortest path still only 
includes vertices in the set 1…k-1. 

D(k)[i, j] = dij
(k) = min(dij

(k-1), dik
(k-1) + dkj

(k-1) )

Initial Matrix of Path Lengths 
Use adjacency matrix A for G = (V, E): 

    w(i, j)  if (i,j) ∈ E 
  A[i, j] = aij =    0  if i = j 
    ∞  if i ≠  j and (i, j) ∉ E 

1 

2 

3 

4 

5 
-1

4

3
6

-2

9
2

46

80 2 -1 ∞ ∞

∞ 0 8 ∞ 9
∞ ∞ 0 6 3
4 ∞ ∞ 0 4
∞ 6 ∞ -2 0

1   2   3   4   5 
1 
2 
3 
4 
5 

Initial Matrix of Predecessors 
Use adjacency matrix Π to keep track of predecessors: 

     
   π(0)

ij =      i        if i ≠ j and w(i,j) < ∞ 
      Ø  if i = j or w(i, j) = ∞ 

1 

2 

3 

4 

5 
-1

4

3
6

-2

9
2

46

8Ø 1 1 Ø Ø 

Ø Ø 2 Ø 2
Ø Ø Ø 3 3
4 Ø Ø Ø 4
Ø 5 Ø 5 Ø 

1   2   3   4   5 
1 
2 
3 
4 
5 

πij is predecessor of j on some shortest 
path from i

Floyd's APSP Algorithm 

Floyd-Warshall-APSP(A) 
  1.  n = rows[A] 
  2.  D(0) =  A 
  3.  for k = 1 to n   
  4.      for i = 1 to n  
  5.          for j = 1 to n  
  6.              if  dij

(k) > dik
(k-1) + dkj

(k-1)  
  7.                      dij

(k) = dik
(k-1) + dkj

(k-1)  
  8.                      πij

(k) = πkj
(k-1) 

  9.              else πij
(k) = πij

(k-1) 
10.  return D(n)  
 

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

0 4 11
6 0 2
3 ∞ 0

D(0) = A =

∅ 1 1
2 ∅ 2
3 ∅ ∅

∏(0) =

7

1



4/18/17

4

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

∅ 1 1
2 ∅ 2
3 1 ∅

∏(1) =

0 4 11
6 0 2
3 7 0

D(1) =
6

2

0 4 6
6 0 2
3 7 0

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

∅ 1 2
2 ∅ 2
3 1 ∅

∏(2) =

D(2) =  
5

3

Printing the shortest path 
 1

 2 3

6
411

3
2

∅ 1 2
3 ∅ 2
3 1 ∅

∏(3) =

0 4 6
5 0 2
3 7 0

D(3) Print-path( p, i, j )  // p is predecessor matrix π 
  1.  if i != j 
  2.        Print-path(p, i, p[ i ] [ j ]) 
  3.  print j 
 

Print-APSP(p, i, j) // p is predecessor matrix π 
  1.  if i = j 
  2.      print i 
  3.  else if p[ i ][ j ] = NIL 
  4.      print "no path from ”+ i + " to ”+ j + “ exists” 
  5.  else  
  6.      Print-APSP(p, i, p[ i ][ j ]) 
  7.      print j 
 

0 4 6
6 0 2
3 7 0

Operation of F-APSP Algorithm 

 1

 2 3

6
411

3
2

0 4 11
6 0 2
3 ∞ 0

D(0) = A =

0 4 11
6 0 2
3 7 0

D(1) D(2) 

2→ 3 → 1

0 4 6
5 0 2
3 7 0

D(3) 

3→ 1 → 2 1→ 2 → 3

F-APSP Algorithm 

0 3 8 -4 ∞

∞ 0 ∞ 7 1
∞ 4 0 ∞ ∞

∞ ∞ ∞ 0 6
2 ∞ -5 ∞ 0

D(0) = A = 

0 3 8 -4 ∞

∞ 0 ∞ 7 1
∞ 4 0 ∞ ∞

∞ ∞ ∞ 0 6
2 5 -5 -2 0

D(1) = 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

0 3 8 -4 4
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 5 -5 -2 0

D(2) = 

F-APSP Algorithm 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5



4/18/17

5

0 3 8 -4 4
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 -1 -5 -2 0

D(3) = 

F-APSP Algorithm 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

0 3 8 -4 2
∞ 0 ∞ 7 1
∞ 4 0 11 5
∞ ∞ ∞ 0 6
2 -1 -5 -2 0

D(4) = 

F-APSP Algorithm 

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

0 1 -3 -4 2
3 0 -4 -1 1
7 4 0 3 5
8 5 1 0 6
2 -1 -5 -2 0

D(5) = 

F-APSP Algorithm 

1à4à5à3, 1à4à5à3à2

2à5à1, 2à5à3, 2à5à1à4

3à2à5à1, 3à2à5à1à4

4à5à1, 4à5à3à2, 4à5à3

 1

 2

 3

 5 4

3 4

6
-4

8

7
2 1

-5

 Running Time of Floyd's-APSP 

Lines 3 – 6: |V3| time for triply-nested for loops 
 

 Overall running time = = θ(V3) 

The code is tight, with no elaborate data structures 
and so the constant hidden in the θ-notation is small.  


