All-Pairs Shortest Paths (Ch. 25)

The all-pairs shortest path problem (APSP)

input: a directed graph G = (V, E) with edge weights

goal: find a minimum weight (shortest) path between every pair of
vertices in V

Can we do this with algorithms we've already seen?

Solution 1: run Dijkstra’s algorithm V times, once with each v € V as the
source node (requires no negative-weight edges in E)
If G is dense with an array implementation of Q
O(V - V2) = 0 (V3) time
If G is sparse with a binary heap implementation of Q
O(V - ((V + E) logV)) = O(V2logV + VElogV) time

4/18/17

All-Pairs Shortest Paths

Solution 2: run the Bellman-Ford algorithm V times (negative edge
weights allowed), once from each vertex.
O(VZ2E), which on a dense graph is O(V*4)

Solution 3: Use an algorithm designed for the APSP problem.
E.g., Floyd's Algorithm

introduces a dynamic programming technique that
uses adjacency matrix representation of G = (V, E)

Warshall's Transitive Closure Algorithm

Input: Adjacency matrix A of G as matrix of 1s and 0's
Output: Transitive Closure or reachability matrix R™ of G

Assumes vertices are numbered 1 to |V|, |V| = n and there are no edge
weights. Finds a series of boolean matrices R©, ..., R(™

Solution for R(™:

Define r;® as the element in the ith row and jth column to be 1 iff there is
a path between vertices i and j using only vertices numbered < k.

R© = A, original adjacency matrix (only 1's are direct edges)

RM the matrix we want to compute

R®'s elements are: RM[i, j] = ry® = & v r &b A kD

Warshall's Algorithm

Warshall (A[1...n,1...n])

1. n =rows[A] R©@=0 ifi=]
2. RO =A =o ifil=j
3. fork=1ton do
4. fori=1tondo
5

6

7

forj=1tondo

R = REDV Rk A Ry D
. return RM

If an element r; is 1 in R&D, it remains 1 in R(k).

If an element r;; is 0 in R*Y), it becomes a 1 iff the element
in row i and column k and the element in column j, row k are
both 1's in R,

Warshall's Algorithm

ol 1][1]]
jooa_ O] 0] 1
1/lo]o

Matrix R(© contains the nodes reachable in one hop

For RW, there is a 1 in row 3, col 1 and col 2, row 1,
so put a 1 in position 3,2. Also, thereisa 1 in row 3,
col 1, and col 3, row 1 so put a 1 in position 3,3

Warshall's Algorithm

1
R<‘>=‘ 0 [[0] 1 ‘
1

Matrix R() contains the nodes reachable in one hop or
on paths that go through vertex 1.

For R, there is no change because 1 can get to 3
through 2 but there is already a direct path between 1
and 3.

Warshall's Algorithm

0|1 ||L
R® = 01|01
1|1

Matrix R contains the nodes reachable in one hop or
on paths that go through vertices 1 or 2.

For R®), there isa 1 in row 1, col 3 and col 1, row 3,
so put a 1 in position 1,1. Also, thereis a 1 in row 2,
col 3 and col 1, row 3, so put a 1 in position 2,1. Also,
thereisa 1 in row 2, col 3 and col 2, row 3, so puta 1
in position 2,2.

4/18/17

Warshall's Algorithm

1111
R® = 11171
1111

Matrix R®) contains the vertices reachable in one hop
or on paths that go through vertices 1, 2, and 3.

Warshall’s Algorithm

* Main idea: a path exists between two vertices i, j, iff
« there is an edge from i to j; or
« there is a path from i to j going through vertex 1; or
« there is a path from i to j going through vertex 1 and/or 2; or
« there is a path from i to j going through vertex 1, 2, and/or 3; or

« there is a path from i to j going through any of the other vertices

AR

R, R
0 0
0 1
0 0
1 1

coo =<
co—~o

0 010
1 011
0 000
0 111

Warshall’s Algorithm: Transitive Closure

) k) k

Rk-1= k[

mp [K= k1

-1 i 1 1

7
T
0

Ones reflect the existence of paths

with no intermediate vertices

(R is just the adjacency matrix);

boxed row and column are used for getting A

RO =

- o o|o|e
oo =loja

(®)
/1

EEEEE

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex a

(note a new path from d'to b);

boxed row and column are used for getting R

AN =

|-|oo—\|cr o o o|=|o

Qoo w
oco|=loa

o =o|olon

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 2, i.e., aand b

(note two new paths);

boxed row and column are used for getting RS
Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 3, i.e., a b, and ¢

(no new paths);

boxed row and column are used for getting R4

R@ =

Q0T
alo|= aa

o

R® =

Qo oo

Ones reflect the existence of paths

A& with intermediate vertices numbered

~0maan [slooow =lojocow -olojow
—~0a-0|-2lco-o =lojo=¢&
—~0maaon —ooon[-ooo|

—o==q [=lo==

Qo T

(note five new paths).

Warshall's Algorithm

Warshall (A[1...n,1...n])
1. n = rows[A] Time efficiency?
2. RO =A

3. fork=1ton do Space efficiency?
4. fori=1tondo

5 forj=1tondo

6 Rij(k) = Rij(k-1) V Rik(k-1> A Rkj<k-1)

7. return R™

4/18/17

Floyd's APSP Algorithm

Input: Adjacency matrix A
Output: Shortest path matrix D™
and predecessor matrix I1(M

Observation: When G contains no
negative-weight cycles, all shortest
paths consist of at most n — 1 edges

Assumes vertices are numbered 1 to |V|

Relies on the Optimal Substructure Property:
All sub-paths of a shortest path are shortest paths.

Solution for D:

Define DWYi, j] = dy® as the minimum weight of any path from vertex i to
vertex j, such that all intermediate vertices are in {1, 2, 3, ..., k}

D = A, original adjacency matrix (only paths are single edges)

D™ the matrix we want to compute

D®'s elements are: DM, j] = d;® = min(d, dy*D + d &)

Recursive Solution for D&)

DM, j] = d,® = min(d,&, dy & + dyD))

dik(k-1) @ dkj(k-n

e

The only intermediate nodes on the paths fromitoj,ito k ork to j are in
the set of vertices {1, 2, 3, ..., k-1}.

If k is included in shortest i to j path, then a shortest path has been found
that includes k.

If k is not included in shortest i to j path, then the shortest path still only
includes vertices in the set 1...k-1.

Initial Matrix of Path Lengths

Use adjacency matrix A for G = (V, E):
w(i, j) if (ij)EE
Ali,j]=a;=40 ifi=j
o ifi# jand(i,j) ¢ E

1 2 3 4.5
1{0[2|-1]]|
2]l0| 0|89
3|w|w|0]6]3
414 0|w|0]|4
5|0|6|w|-2]0

Initial Matrix of Predecessors

Use adjacency matrix IT to keep track of predecessors:

[}

o), = { i ifi#]and w(ij) <
@ ifi=jorw(ij)=

1 2 3 4 5
1(3|1]11/9|92
2(0|@|2|9|2
3|0|@|@(3]3
4|14|0|0|9|4
5|0|5|0|5|9@

7, is predecessor of j on some shortest
path from i

Floyd's APSP Algorithm

Floyd-Warshall-APSP(A)
1. n =rows[A]

2. DO = A
3. fork=1ton
4 fori=1ton
5 forj=1ton
6. if dy0 > dy kN + dyyD
7 di® = d & + d k1)
8 T[ij(k) = TTKj(k’”
9 else) = (k)
10. return DM

Operation of F-APSP Algorithm

ol 4 11|]
6/| 0|2
31 %1 0
LT\
7
@11
no= (2| a|2
3]0,

Operation of F-APSP Algorithm

DO = ‘

g1 197>
2122

301

0 [|4]] 94—
6 [lo[] 2]]
3117]| o

4/18/17

Operation of F-APSP Algorithm

(—¢ —
1 0|41]|6
S,

© D@ = 6|02
L1337 o]]]

@12

=" T2[@]2

311 |@

Printing the shortest path

R
Q@ no®=
&
Print-APSP(p, i, j) // p is predecessor matrix
1 ifi=j
2. printi
3. elseifp[i][j]=NIL
4 print "no path from "+ i + " to "+ j + “ exists”
5. else
6. Print-APSP(p, i, p[i][j])
7 print j

g1 2
3192
3110
D®
0(4]|6
0|2
710

Operation of F-APSP Algorithm

F-APSP Algorithm

[0]3 8 4 =
D<0>—A-OOO°O71
__00400000
| o o 0 6
2] 5[] 0
0 |3] 8 4 [»]
e [0] 0 7 1]
D) =
o [4] 0 [oo][o]
w |0l o 0 6
2 151520

& Cllolla [11][]
o
1 u DO=A= ||6]] O | 2
gb@ 3w |0
D7(1) D® DO®
0 [[4]] 11 01]41l6 416
[lello[f2]T]6]0]] 0|2
37|l o L1317 []ol]] 710
3512 1-2->3 2531
F-APSP Algorithm
0 3 [8] 4 4
D@ = o 0 | 7 1
l« 4 [0 11 5]
w o |of 0 6
2 5 2 0

4/18/17

F-APSP Algorithm

F-APSP Algorithm

D@ =

._.
=
el v =]

0 3 8 |4
0 o |7] 1
D®) =
4 0 |11 5
‘oo w oo [0 6‘
2 -1 520
F-APSP Algorithm
0 427 1345533, 13455352
0 1] 25551,25553,255>1>4
D®) =
4 0 5 | 3329551,332353134
6 | 49551,4555352,4>5>3
2 -1 -5 -2 0

Running Time of Floyd's-APSP

Lines 3 — 6: |V3| time for triply-nested for loops
Overall running time = = 0(V?)

The code is tight, with no elaborate data structures

and so the constant hidden in the 6-notation is small.

