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Depth-First Traversal
Depth-First Traversal is another algorithm for traversing a 
graph.

Called depth-first because it travels "deeper" in the graph 
whenever possible.

Edges are explored out of the most recently discovered 
vertex v that still has unexplored edges.  When all of v's 
edges have been explored, the search "backtracks" to 
explore the edges incident on the vertex from which v was 
discovered.

We will use an algorithm with a stack, S, to manage the set 
of nodes.

Depth-First Search
DFS algorithm maintains the following information for each 
vertex u:

- u.c (white, gray, or black) : indicates status
white = not discovered yet
gray = discovered, but not finished
black = finished

- u.d : discovery time of node u

- u.f : finishing time of node u 

- u.π : predecessor of u in Depth-First tree

DFS node
 

Each node has fields for predecessor (π), discovery time (d), 
finish time (f) and color (c).  Each node also has an associated 
adjacency list with pointers to neighboring nodes. 
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Depth-First Search

DFS-Init (G, s): 
 1. time = 0
 2. for all nodes v
 3.    v.d = v.f = ∞ 
 4.    v.c = white
 5.    v.π = NONE
 6. S = ∅
 7. DFS (G, s)
 

Initialize global timer to 0.

Set discovery time and finish 
times of all nodes to infinity 
and color them white.

Initialize stack S to ∅.

Call DFS (G, s)

Depth-First Search Using a Stack
DFS (G,s)
 1. S.push(s)
 2. while S is not empty
 3.    u = S.peek()
 4.    if u.c == WHITE
 5.        u.c = GRAY
 6.        u.d = time
 7.        time = time + 1
 8.        for all white neighbors v of u
 9             v.π = u
10.            S.push(v)
11.    else if u.c == GRAY
12.        S.pop()
13.        u.c = BLACK
14.        u.f = time
15.        time = time + 1
16.    else // u is BLACK
17.        S.pop()
18. end while

Complexity (Adjacency List) 
•  check all edges 

adjacent to each node 
from both directions - 
O(E) time 

•  total = O(V + E) = 
O(V2) (w.c.) 

Complexity is based on 
number of edges |E| 

Depth-First Search (recursive version)

DFS (G) 
1.   for each w ∈  G 
2.      if w.c == white 
3.          DFS-Visit (G,w) 

Initially, time (counter) = 0 
 
After execution, for every 
vertex u,  u.d < u.f 
 

DFS-Visit (G,u) 
1.   u.c = gray 
2.   u.d = time 
3.   time = time + 1 
4.   for each v adjacent to u 
5.       if v.c == white 
6.           v.π = u 
7.           DFS-Visit(G,v) 
8.       end if 
9.   end for 
10.  u.c = black 
11.  u.f = time 
12.  time = time + 1 

Note:  If G = (V, E) is not 
connected, then DFS will still 
visit the entire graph with the 
additional code above. 
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public class DepthFirstSearch { 
     private boolean[ ] marked; 
     private int[ ] edgeTo; 
     private int count = 0; 
 

     public DepthFirstSearch(Graph G, int s) { 
          marked = new boolean[|G.V()|]; 
          dfs(G, s); 
     } 
     private void dfs(Graph G, int v) { 
          marked[v] = true; 
          count++; 
          for each w adjacent to v 
               if (!marked[w]) 
                    edgeTo[w] = v  
                    dfs(G,w); 
     } 

Enumerating shortest path, sàv
pathTo(v):  
 1. if (!marked[v]) return false 
 2. Stack<Integer> path = new Stack<Integer>()  
 3. for (int x = v; x != s; x = edgeTo[x]) 
 4.      path.push(x)   
 5. path.push(s) 
 6. return path      
  

When pathTo finishes, the stack path will contain the dfs path 
from s to v and they can be popped off the stack in order. 

Proposition B1: DFS marks all vertices connected to a 
given source in time proportional to the sum of their 
degrees.

Informal proof:
Every marked vertex is connected by a path to s since the 
algorithm finds vertices only by following edges.  Now suppose 
that some unmarked vertex w is connected to s. Since s itself 
is marked, any path from s to w must have at least one edge 
from the set of marked to unmarked nodes. Since s is marked, 
any path from s to w must have at least one edge from the set 
of marked to unmarked vertices, say v-x.  But the algorithm 
would have discovered x after marking v, so no such edge can 
exist, a contradiction. The time bound follows because marking 
ensures that each vertex is visited once (taking time prop to its 
degree to check marks

Analysis of Depth-First Search
Proposition B2: DFS allows us to provide clients with a 
path from a given source to any marked vertex in time 
proportional to the path length.

Informal proof:
By induction on the number of vertices visited, it follows that 
the the edgeTo array represents a tree rooted at the source. 
The pathTo method builds the path in time proportional to its 
length.

Example DFS Traversal
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The first 
subscript 
indicates
the time at 
which each 
node is 
discovered 
and pushed 
onto stack; the 
second 
indicates the 
time at which 
the node 
became a 
dead end.
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Tree edges are solid lines and dashed lines are back
edges.
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Breadth-first Search Forest
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Tree edges are solid lines and dashed lines are cross
edges.

DFS Tree

DFS builds a depth-first tree whose edges can be traced 
from any node to s using the π values at each node. Or 
by using the edgeTo[ ] array in the non-object-oriented 
version.

The DFS algorithm defines a depth-first forest Gπ.

Topological Sort - Application of DFS

Complexity (Adjacency List Representation) - O(V + E) 
 
Topologically sorted vertices are ordered in reverse order of their  
finishing times.  An application of this type of sorting algorithm is to  
indicate precedence among ordered events represented in a DAG. 

input:    directed acyclic graph (DAG) 
output:  ordering of nodes s.t. if (u,v) ∈ E, then u comes before v in    
            ordering 
 

Topological-Sort (G) 
1.  call DFS(G,s) to compute finishing times v.f for each v 
2.  as each vertex is finished, insert it at head of a linked list 
3.  return the linked list of vertices 

Classification of DFS Edges  
in a Directed Graph

1.  Tree edges:  Edges included in depth-first forest.  Edge 
(u,v) is a tree edge if v was first discovered by edge (u,v). 

2.  Back edges:   Edge (u,v) connects a vertex u to an 
ancestor (non-parent) v in a depth-first tree.  

3.  Forward edges:  Edge (u,v) connects a vertex u to a 
descendant (non-child) v in a depth-first tree.

4.  Cross edges:  All other edges, i.e., between sibling nodes 
(e.g., nodes on different branches) of the same depth-first 
tree or between nodes in different depth-first trees.

Finding Strongly Connected 
Components of a Digraph

A digraph is strongly connected if, for any distinct pair of vertices u 
and v there exists a directed path from u to v and a directed path from 
v to u.  In general, a digraph's vertices can be partitioned into disjoint 
maximal subsets of vertices that are mutually accessible via directed 
paths of the digraph; these subsets are called strongly connected 
components. 

input:    directed graph G 
output:  strongly connected components of G 
 

1.  do a DFS traversal of the digraph and number its vertices in the 
order that they become dead ends. 

2.  reverse the directions of all the edges of the digraph to get (GT) 
3.  do a DFS traversal of GT by starting the traversal at the highest 

numbered vertex and consider the vertices in order of decreasing 
u.f 

4.  output the vertices of each tree in the DFF from line 3 as GSCC 

Finding Strongly Connected 
Components of a Digraph

The strongly connected components GSCC are exactly the subsets of 
vertices in each DFS tree obtained during step 3, the last traversal. 
 
Time complexity of this algorithm? 

input:    directed graph G 
output:  strongly connected components of G 
 

1.  do a DFS traversal of the digraph and number its vertices in the 
order that they become dead ends. 

2.  reverse the directions of all the edges of the digraph to get (GT) 
3.  do a DFS traversal of GT by starting the traversal at the highest 

numbered vertex and consider the vertices in order of decreasing 
u.f 

4.  output the vertices of each tree in the DFF from line 3 as GSCC 


