
4/24/19

1

Dynamic Programming (Ch. 15)
Dynamic programming solutions rely on the optimal
substructure property. Usually the recursive solutions
to these problems takes exponential time with many
redundant calculations. The Floyd-Warshall algorithm
used dynamic programming techniques to compute the
APSP problem from the bottom up.

Two more dynamic programming examples from
Chapter 15 that we will cover in this lecture:
 0/1 Knapsack

Longest-Common-Subsequence

0-1 Knapsack Problem
0-1 Knapsack Problem:
Given items T1, T2, T3, ..., Tn, with associated weights w1, w2,
w3, ..., wn and benefit values b1, b2, b3, ..., bn, how can we
maximize the total benefit subject to an absolute weight limit W?

S = {maximize ∑ bi subject to ∑ wi ≤ W.}
i ∈ T i ∈ T

A brute-force solution to this problem is to enumerate all possible
subsets of T and select the one with the highest total benefit from
among all those whose weight is ≤ W

The running time of this brute-force approach is θ(2n).

0-1 Knapsack Problem
Suppose we use an approach like that used in the Floyd-
Warshall APSPs algorithm:
Define subproblems by using a parameter k so that subproblem
k is the best way to fill the knapsack using only items from the
set T1...Tk

Derive an equation that takes the best solution using only items
from Tk-1 and considers how to add the item k to that

Unfortunately, we can find a counter-example to this approach
that shows the global solution obtained in this way may actually
contain a suboptimal subproblem solution

0-1 Knapsack solution counterexample
Given the following (benefit, weight) pairs

 T1 T2 T3 T4 T5
 (3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

Best solution with the first 4 items: {T1, T2, T3, T4}

(3,2) (5,4) (8,5) (4,3)

Best solution with the first 5 items excluding T4:

(3,2) (5,4) (8,5) (10,9)
overall
benefit
= 26 (wt=20)

overall
benefit
= 20 (wt=14)

14

20

0-1 Knapsack Problem
A better approach is to formulate each sub-problem as that
of computing B[k,w], which is defined as the maximum total
value of a subset of Tk from among all those having total
weight exactly w.

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w - wk] + bk} otherwise

The best subset of Tk that has total weight w is either the best subset of
Tk-1 that has total weight w or the best subset of Tk-1 that has total
weight w – wk plus the benefit of item k.

This solution is simple (only 2 parameters, k and w) and it satisfies the
sub-problem optimization condition. The problem B[k, w] is built from
B[k-1, w] or B[k-1, w – wk].

Algorithm 0-1 Knapsack

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

Input: Set T of n items, such that item i has positive benefit
bi and positive integer weight wi; positive integer for
maximum total weight W.

Output: For w = 0, ...,W, maximum benefit B[w] of a subset
 of T with total weight w. B is an array indexed from 0
 to W.

4/24/19

2

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4
 (12, 2), (10,1), (20, 3), (15, 2) and W = 5

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w-wk] + bk } ow

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2
3
4

After adding T1: B[k-1,w-wk + bk]
is bigger than B[k-1, w] for all weight
limits down to 2.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4
 (12, 2), (10,1), (20, 3), (15, 2) and W = 5

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w-wk] + bk } ow

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3
4

After adding T2: B[k-1,w-wk + bk]
is bigger than B[k-1, w] for all weight
limits down to 1.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4
 (12, 2), (10,1), (20, 3), (15, 2) and W = 5

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w-wk] + bk } ow

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3 0 10 12 22 30 32
4

After adding T3: B[k-1,w-wk + bk]
is bigger than B[k-1, w] for all weight
limits down to 3.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4
 (12, 2), (10,1), (20, 3), (15, 2) and W = 5

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w-wk] + bk } ow

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3 0 10 12 22 30 32
4 0 10 15 25 30 37

After adding T4: B[k-1,w-wk + bk]
is bigger than B[k-1, w] for weight
limit 5.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4
 (12, 2), (10,1), (20, 3), (15, 2) and W = 5

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w-wk] + bk } ow

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3 0 10 12 22 30 32
4 0 10 15 25 30 37

The maximum benefit for a weight
limit of 5 is the benefit of pairs
{T1, T2, T4}

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4 T5
 (3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2nd iteration: bk = 5, wk = 4

0 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1st iteration: bk = 3, wk = 2

B[k,w] = B[k-1, w] if wk > w
 max{B[k-1,w], B[k-1, w-wk] + bk } ow

4/24/19

3

0-1 Knapsack Algorithm Execution
0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

4th iteration: bk = 4, wk = 3

0 0 3 3 5 8 8 11 11 13 13 16 16 16 16 16 16 16 16 16 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3rd iteration: bk = 8, wk = 5

Given the following (benefit, weight) pairs
 T1 T2 T3 T4 T5
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 20 20 20 20 20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5th iteration: bk = 10, wk = 9

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 21 22 23 25 26
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0-1 Knapsack Algorithm Execution
0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk

Given the following (benefit, weight) pairs
 T1 T2 T3 T4 T5
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 21 22 23 25 26
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So this gives us the best possible benefit of a set chosen from T with
a total weight of 20, but which subset of T do we use?

0-1 Knapsack Algorithm Execution
0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk
7. list[w] = list[w – wk] + k

Given the following (benefit, weight) pairs
 T1 T2 T3 T4 T5
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1st iteration: bk = 3, wk = 2

{1} {1}
…… …

2nd iteration: bk = 5, wk = 4

0 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

{1} {1} {2} {2} {1,2} {1,2}…… …

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk
7. list[w] = list[w – wk] + k

0-1 Knapsack Algorithm Execution

4th iteration: bk = 4, wk = 3

0 0 3 3 5 8 8 11 11 13 13 16 16 16 16 16 16 16 16 16 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3rd iteration: bk = 8, wk = 5

Given the following (benefit, weight) pairs
 T1 T2 T3 T4 T5
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 20 20 20 20 20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

{1} {1} {2} {3} {1,2} {1,2,3}…

{1} {4} {2} {3} {1,2} {2,3,4} …{1,3} {3,4} {2,3}

{1,3} {2,3}{2,3}

{1,3,4} {1,2,3,4}

{1,2,3}

{1,2,3,4}

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk
7. list[w] = list[w – wk] + k

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs
 T1 T2 T3 T4 T5
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

5th iteration: bk = 10, wk = 9

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 21 22 23 25 26
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

{1,2,3} {1,2,3,5}
This verifies what we can confirm through visual inspection of this
small set of (benefit, weight) pairs – that the best value for a set that
weighs exactly 20 lbs. is the set {1,2,3,5}.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs

 T1 T2 T3 T4 T5
 (3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20

0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 0 3 3 5 8 8 11 11 13 13 16 16 16 16 16 16 16 16 16 16

0 0 3 4 5 8 8 11 12 13 1
5

16 17 17 20 20 20 2
0

20 20 20

0 0 3 4 5 8 8 11 12 13 1
5

16 17 17 20 20 21 2
2

23 25 26

4/24/19

4

0-1Knapsack (T, W)
1. for w = 0 to W do
2. B[w] = 0
3. for k = 1 to n do
4. for w = W downto wk do
5. if B[w – wk] + bk > B[w] then
6. B[w] = B[w – wk] + bk
7. list[w] = list[w – wk] + k

0-1 Knapsack Algorithm Execution Complexity of 0-1 Knapsack Solution
Running time is dominated by 2 nested for-loops, where the
outer loop iterates n times and the inner one iterates at
most W times.

The running time of the 0-1Knapsack algorithm depends on a
parameter W that is not proportional to the size of the input.

An algorithm whose running time depends on the magnitude of a
number given in the input, not the size of the input set, is called a
pseudo-polynomial time algorithm.

The running time of this algorithm is O(nW)

Fractional Knapsack Problem (S. 16.2)

Fractional Knapsack Problem:
Given items T1, T2, T3, ..., Tn, with associated weights w1, w2,
w3, ..., wn and benefit values b1, b2, b3, ..., bn, how can we
maximize the total benefit subject to an absolute weight limitation
W?

We can take an amount xi of each item i such that
0 ≤ xi ≤ wi for each i ∈ T and ∑ xi ≤ W

The total benefit is determined by computing the value
per unit weight of each item and sorting by that value

i ∈ T

Note that in this problem, unlike the 0-1Knapsack problem, we are
allowed to use arbitrary fractions of an item.

Any optimal solution
contains items 2 and 3,
not 1. So method like
Floyd-Warshall would
not work here

For fractional knapsack
problem, add the items
in order of greatest
value per pound. Top
off with a fraction of
lower value item.

Fractional Knapsack Algorithm

FractionalKnapsack (T, W)
1. for each item i in T do
2.  xi = 0
3.  vi = bi/wi {value index of item}
4.  w = 0
5. while w < W do
6. remove from S item i with highest vi
7. a = min{wi, W - w}
8. xi = a
9. w = w + a

Input: Set T of items (such that each item has a positive benefit
and a positive weight) and a positive maximum weight value W.
Output: Amount xi of each item that maximizes the total benefit
while not exceeding the maximum total weight W

Fractional Knapsack Algorithm

FractionalKnapsack (T, W)
1. for each item i in T do
2.  xi = 0
3.  vi = bi/wi {value index of item}
4.  w = 0
5. while w < W do
6. remove from S item i with highest vi
7. a = min{wi, W-w}
8. xi = a
9. w = w + a

The running time of the Fractional Knapsack algorithm is O(nlgn).
Why?

This algorithm uses a greedy approach, not a dynamic programming
technique, to find the optimal solution. Which other algorithms did we
study that use a greedy approach to find an optimal solution?

4/24/19

5

01 versus Fractional Knapsack Algorithm

Although these problems are similar, the fractional knapsack
problem is solvable in polynomial time using a greedy
strategy.

If we use the value per pound greedy strategy to make
choices in the 0-1 knapsack problem, we end up with a sub-
optimal solution.

Longest Common Subsequence Problem (s. 15.4)

Problem: Given X = < x1, x2, ..., xm > and Y = <y1, y2,..., yn), find
the longest common subsequence (LCS) of X and Y.

Example:
 X = 〈 A, B, C, B, D, A, B 〉
 Y = 〈 B, D, C, A, B, A 〉
 LCSXY = 〈 B, C, B, A 〉 (or also LCSXY = 〈 B, D, A, B 〉)

Brute-Force solution:
1.  Enumerate all subsequences of X and check to see if they appear in Y.
2.  Each subsequence of X corresponds to a subset of the indices

{1,2,...,m} of the elements of X – so there are 2m subsequences of X
3.  Clearly, this is not a good approach...time to try dynamic

programming!

Recursive Solution to LCS Problem
The recursive LCS Formulation
•  Let C[i,j] = length of the LCS of Xi and Yj, where
•  Xi = 〈 x1, x2,..., xi 〉 and Yj = 〈 y1, y2,..., yj 〉
•  Our goal: C[m,n] (consider entire X and Y)
•  Basis: C[0,j] = 0 and C[i,0] = 0
•  C[i,j] is calculated as shown below (two cases):

Case 1: xi = yj (i, j > 0)
In this case, we can increase the size of the LCS of X i-1 and Yj-1
by one by appending xi = yj to the LCS of Xi-1 and Yj-1, i.e.,

C[i, j] = C[i-1, j-1] + 1

Case 2: xi ≠ yj (i, j > 0)
In this case, we take the LCS to be the longer of the LCS of Xi-1
and Yj, and the LCS of Xi and Yj-1, i.e.,

C[i, j] = max(C[i, j-1], C[i-1, j])

Top-Down DP Solution to LCS Problem
•  initialize C[i, 0] = C[0 ,j] = 0 for i = 0...m and j = 1...n
•  initialize C[i, j] = NIL for i = 1...m and j = 1...n

LCS(i, j)
1. if C[i, j] = NIL
2. if xi = yj then
3. C[i, j] = LCS(i-1, j-1) + 1
4. else
5. C[i, j] = max(LCS (i, j-1), LCS (i-1, j))
6. return C[i, j]

C is a two-dimensional array holding the solutions to subproblems.

Bottom-Up DP Solution to LCS Problem
We now want to figure out the “right” order to solve the
subproblems.

To compute C[i, j], we need the solutions to:
 C[i-1, j-1] (when xi = yj)
 C[i-1, j] and C[i, j-1] (when xi ≠ yj)

If we fill in the C array in row major order, these dependencies will
be satisfied.

LCS(X, Y)
1. m = length[X]
2. n = length[Y]
3. for i = 0 to m do C[i, 0] = 0
4. for j = 0 to n do C[0, j]=0
5. for i = 1 to m do
6. for j = 1 to n do
7. if xi = yj then C[i, j] = C[i-1, j-1] + 1
8. else C[i, j] = max (C[i, j-1], C[i-1, j])
9. return C[m, n]

Bottom-Up LCS DP

Running time = O(mn) (constant time for each entry in C[])

This algorithm finds the value of the LCS, but how can we keep
track of the characters in the LCS?

We need to keep track of which neighboring table entry gave
the optimal solution to a sub-problem (break ties arbitrarily).

 if xi = yj the answer came from the upper left (diagonal)
 if xi ≠ yj the answer came from above or to the left,
 whichever value is larger (if equal, default to above).

4/24/19

6

Bottom-Up DP Solution to LCS Problem
Idea: Save a pointer to
find the path
representing the
longest common
subsequence. Use a 2-
dimensional array B[]
to store the pointers
(initially this array will
be all NIL).

LCS(X, Y)
 1. m = length[X]
 2. n = length[Y]
 3. for i = 0 to m do C[i, 0] = 0
 4. for j = 0 to n do C[0, j]=0
 5. for i = 1 to m do
 6. for j = 1 to n do
 7. if xi = yj then C[i, j] = C[i-1, j-1] + 1
 8. B[i, j] = " "
 9. else
10.  if C[i - 1, j] >= C[i, j - 1] then
11.  C[i, j] = C[i - 1, j]
12. B[i, j] = " ↑ "
13.  else C[i , j] = C[i, j - 1]
14.  B[i, j] = " ← "

←

Bottom-Up LCS DP

b a b

a

b

b

a

j ⇒ 0 1 2 3
i
⇓
0

1

2

3

4

0 0 0 0

0 0 1 1

0 1 1 2

0 1 1 2

0 1 2 2

↑ ↑ ↑
↑

↑↑
↑

↑

↑

↑

↑

↑

Complexity of LCS Algorithm

The running time of the LCS algorithm is O(mn), since
each table entry takes O(1) time to compute.

The running time of the Print-LCS algorithm is O(m + n),
since one of m or n is decremented in each stage of the
recursion.

