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Dynamic Programming (Ch. 15)
Dynamic programming solutions rely on the optimal 
substructure property.  Usually the recursive solutions  
to these problems takes exponential time with many  
redundant calculations.  The Floyd-Warshall algorithm 
used dynamic programming techniques to compute the 
APSP problem from the bottom up. 
 
Two more dynamic programming examples from  
Chapter 15 that we will cover in this lecture: 
      0/1 Knapsack  

Longest-Common-Subsequence 
  

0-1 Knapsack Problem
0-1 Knapsack Problem: 
Given items T1, T2, T3, ..., Tn, with associated weights w1, w2, 
w3, ..., wn and benefit values b1, b2, b3, ..., bn, how can we 
maximize the total benefit subject to an absolute weight limit W? 

S = {maximize  ∑ bi   subject to  ∑ wi  ≤ W.}
i ∈ T i ∈ T

A brute-force solution to this problem is to enumerate all possible 
subsets of T and select the one with the highest total benefit from 
among all those whose weight is ≤ W  

The running time of this brute-force approach is θ(2n).

0-1 Knapsack Problem
Suppose we use an approach like that used in the Floyd- 
Warshall APSPs algorithm:   
Define subproblems by using a parameter k so that subproblem 
k is the best way to fill the knapsack using only items from the 
set T1...Tk 

Derive an equation that takes the best solution using only items  
from Tk-1 and considers how to add the item k to that 

Unfortunately, we can find a counter-example to this approach 
that shows the global solution obtained in this way may actually  
contain a suboptimal subproblem solution 

0-1 Knapsack solution counterexample
Given the following (benefit, weight) pairs 

    T1      T2      T3     T4             T5 
 (3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

Best solution with the first 4 items: {T1, T2, T3, T4}

(3,2) (5,4) (8,5) (4,3)

Best solution with the first 5 items excluding T4:

(3,2) (5,4) (8,5) (10,9)
overall 
benefit 
= 26 (wt=20)

overall 
benefit 
= 20 (wt=14)

14

20

0-1 Knapsack Problem
A better approach is to formulate each sub-problem as that 
of computing B[k,w], which is defined as the maximum total 
value of a subset of Tk from among all those having total 
weight exactly w. 

B[k,w]  =    B[k-1, w]     if wk  > w 
         max{B[k-1,w], B[k-1, w - wk] + bk}  otherwise 

The best subset of Tk that has total weight w is either the best subset of 
Tk-1 that has total weight w or the best subset of Tk-1 that has total 
weight w – wk  plus the benefit of item k. 

This solution is simple (only 2 parameters, k and w) and it satisfies the 
sub-problem optimization condition.  The problem B[k, w] is built from  
B[k-1, w] or B[k-1, w – wk]. 

Algorithm 0-1 Knapsack

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

Input:  Set T of n items, such that item i has positive benefit
bi and positive integer weight wi; positive integer for 
maximum total weight W.

Output:  For w = 0, ...,W, maximum benefit B[w] of a subset
  of T with total weight w.  B is an array indexed from 0 
  to W.
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0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1        T2          T3        T4            
 (12, 2), (10,1), (20, 3), (15, 2)  and W = 5 

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

B[k,w]  =    B[k-1, w]                     if wk  > w 
    max{B[k-1,w], B[k-1, w-wk] + bk }    ow 

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2
3
4

After adding T1:  B[k-1,w-wk + bk]
is bigger than B[k-1, w] for all weight
limits down to 2.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1        T2          T3        T4            
 (12, 2), (10,1), (20, 3), (15, 2)  and W = 5 

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

B[k,w]  =    B[k-1, w]                     if wk  > w 
    max{B[k-1,w], B[k-1, w-wk] + bk }    ow 

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3
4

After adding T2:  B[k-1,w-wk + bk]
is bigger than B[k-1, w] for all weight
limits down to 1.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1        T2          T3        T4            
 (12, 2), (10,1), (20, 3), (15, 2)  and W = 5 

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

B[k,w]  =    B[k-1, w]                     if wk  > w 
    max{B[k-1,w], B[k-1, w-wk] + bk }    ow 

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3 0 10 12 22 30 32
4

After adding T3:  B[k-1,w-wk + bk]
is bigger than B[k-1, w] for all weight
limits down to 3.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1        T2          T3        T4            
 (12, 2), (10,1), (20, 3), (15, 2)  and W = 5 

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

B[k,w]  =    B[k-1, w]                     if wk  > w 
    max{B[k-1,w], B[k-1, w-wk] + bk }    ow 

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3 0 10 12 22 30 32
4 0 10 15 25 30 37

After adding T4:  B[k-1,w-wk + bk]
is bigger than B[k-1, w] for weight
limit 5.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1        T2          T3        T4            
 (12, 2), (10,1), (20, 3), (15, 2)  and W = 5 

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

B[k,w]  =    B[k-1, w]                     if wk  > w 
    max{B[k-1,w], B[k-1, w-wk] + bk }    ow 

i 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 12 12 12 12
2 0 10 12 22 22 22
3 0 10 12 22 30 32
4 0 10 15 25 30 37

The maximum benefit for a weight 
limit of 5 is the benefit of pairs
{T1, T2, T4}

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1      T2      T3     T4             T5 
 (3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0         1          2        3        4          5        6          7        8        9        10      11      12        13       14       15      16       17      18       19       20

2nd iteration:  bk = 5, wk = 4

0 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0         1          2        3        4          5        6          7        8        9        10      11      12        13       14       15      16       17      18       19       20

1st iteration:  bk = 3, wk = 2

B[k,w]  =    B[k-1, w]                     if wk  > w 
    max{B[k-1,w], B[k-1, w-wk] + bk }    ow 
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0-1 Knapsack Algorithm Execution
0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

4th iteration:  bk = 4, wk = 3

0 0 3 3 5 8 8 11 11 13 13 16 16 16 16 16 16 16 16 16 16
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

3rd iteration:  bk = 8, wk = 5

Given the following (benefit, weight) pairs 
   T1      T2      T3     T4             T5 
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 20 20 20 20 20
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

5th iteration:  bk = 10, wk = 9

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 21 22 23 25 26
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

0-1 Knapsack Algorithm Execution
0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 

Given the following (benefit, weight) pairs 
   T1      T2      T3     T4             T5 
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 21 22 23 25 26
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

So this gives us the best possible benefit of a set chosen from T with
a total weight of 20, but which subset of T do we use?

0-1 Knapsack Algorithm Execution
0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 
7.                list[w] = list[w – wk] + k 

Given the following (benefit, weight) pairs 
   T1      T2      T3     T4             T5 
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0         1          2        3        4          5        6          7        8        9        10      11      12        13       14       15      16       17      18       19       20

1st iteration:  bk = 3, wk = 2

{1} {1}
…… …

2nd iteration:  bk = 5, wk = 4

0 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0         1          2        3        4          5        6          7        8        9        10      11      12        13       14       15      16       17      18       19       20

{1} {1} {2} {2} {1,2} {1,2}…… …

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 
7.                list[w] = list[w – wk] + k 

0-1 Knapsack Algorithm Execution

4th iteration:  bk = 4, wk = 3

0 0 3 3 5 8 8 11 11 13 13 16 16 16 16 16 16 16 16 16 16
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

3rd iteration:  bk = 8, wk = 5

Given the following (benefit, weight) pairs 
   T1      T2      T3     T4             T5 
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 20 20 20 20 20
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

{1} {1} {2} {3} {1,2} {1,2,3}…

{1} {4} {2} {3} {1,2} {2,3,4} …{1,3} {3,4} {2,3}

{1,3} {2,3}{2,3}

{1,3,4} {1,2,3,4}

{1,2,3}

{1,2,3,4}

0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 
7.                list[w] = list[w – wk] + k 

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 
   T1      T2      T3     T4             T5 
(3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

5th iteration:  bk = 10, wk = 9

0 0 3 4 5 8 8 11 12 13 15 16 17 17 20 20 21 22 23 25 26
0         1          2          3         4          5         6          7         8         9         10       11        12        13       14        15       16       17       18       19       20

{1,2,3} {1,2,3,5}
This verifies what we can confirm through visual inspection of this
small set of (benefit, weight) pairs – that the best value for a set that
weighs exactly 20 lbs. is the set {1,2,3,5}.

0-1 Knapsack Algorithm Execution
Given the following (benefit, weight) pairs 

    T1      T2      T3     T4             T5 
 (3,2), (5,4), (8,5), (4,3) and (10,9) and W = 20 

0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0         1          2        3        4          5        6          7        8        9        10      11      12        13       14       15      16       17      18       19       20

0 0 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 0 3 3 5 8 8 11 11 13 13 16 16 16 16 16 16 16 16 16 16

0 0 3 4 5 8 8 11 12 13 1
5

16 17 17 20 20 20 2
0

20 20 20

0 0 3 4 5 8 8 11 12 13 1
5

16 17 17 20 20 21 2
2

23 25 26
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0-1Knapsack (T, W) 
1.  for w = 0 to W do 
2.       B[w] = 0 
3.  for k = 1 to n  do 
4.       for w = W downto wk do 
5.           if B[w – wk] + bk > B[w] then 
6.                B[w] = B[w – wk] + bk 
7.                list[w] = list[w – wk] + k 

0-1 Knapsack Algorithm Execution Complexity of 0-1 Knapsack Solution
Running time is dominated by 2 nested for-loops, where the 
outer loop iterates n times and the inner one iterates at 
most W times. 

The running time of the 0-1Knapsack algorithm depends on a 
parameter W that is not proportional to the size of the input. 

An algorithm whose running time depends on the magnitude of a 
number given in the input, not the size of the input set, is called a 
pseudo-polynomial time algorithm. 

The running time of this algorithm is O(nW)

Fractional Knapsack Problem (S. 16.2)

Fractional Knapsack Problem: 
Given items T1, T2, T3, ..., Tn, with associated weights w1, w2, 
w3, ..., wn and benefit values b1, b2, b3, ..., bn, how can we 
maximize the total benefit subject to an absolute weight limitation 
W? 

We can take an amount xi of each item i such that
0 ≤ xi ≤ wi for each i ∈ T and  ∑ xi ≤ W  

The total benefit is determined by computing the value
per unit weight of each item and sorting by that value

i ∈ T

Note that in this problem, unlike the 0-1Knapsack problem, we are 
allowed to use arbitrary fractions of an item. 

Any optimal solution 
contains items 2 and 3, 
not 1.  So method like 
Floyd-Warshall would 
not work here 

For fractional knapsack 
problem, add the items 
in order of greatest 
value per pound. Top 
off with a fraction of 
lower value item. 

Fractional Knapsack Algorithm

FractionalKnapsack (T, W) 
1.  for each item i in T do 
2.     xi = 0 
3.     vi = bi/wi    {value index of item} 
4.  w = 0 
5.  while w < W do 
6.      remove from S item i with highest vi  
7.      a = min{wi, W - w} 
8.      xi = a 
9.      w = w + a 

Input:  Set T of items (such that each item has a positive benefit 
and a positive weight) and a positive maximum weight value W. 
Output:  Amount xi of each item that maximizes the total benefit 
while not exceeding the maximum total weight W 

Fractional Knapsack Algorithm

FractionalKnapsack (T, W) 
1.  for each item i in T do 
2.     xi = 0 
3.     vi = bi/wi    {value index of item} 
4.  w = 0 
5.   while w < W do 
6.      remove from S item i with highest vi  
7.      a = min{wi, W-w} 
8.      xi = a 
9.      w = w + a 

The running time of the Fractional Knapsack algorithm is O(nlgn). 
Why? 
 

This algorithm uses a greedy approach, not a dynamic programming 
technique, to find the optimal solution.  Which other algorithms did we 
study that use a greedy approach to find an optimal solution? 
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01 versus Fractional Knapsack Algorithm

Although these problems are similar, the fractional knapsack 
problem is solvable in polynomial time using a greedy 
strategy. 
 
If we use the value per pound greedy strategy to make 
choices in the 0-1 knapsack problem, we end up with a sub-
optimal solution. 

Longest Common Subsequence Problem (s. 15.4)

Problem:  Given X = < x1, x2, ..., xm > and Y = <y1, y2,..., yn), find 
the longest common subsequence (LCS) of X and Y. 

Example: 
 X = 〈 A, B, C, B, D, A, B 〉 
 Y = 〈 B, D, C, A, B, A 〉 
 LCSXY = 〈 B, C, B, A 〉 (or also LCSXY = 〈 B, D, A, B 〉) 

Brute-Force solution: 
1.  Enumerate all subsequences of X and check to see if they appear in Y. 
2.  Each subsequence of X corresponds to a subset of the indices 

{1,2,...,m} of the elements of X – so there are 2m subsequences of X  
3.  Clearly, this is not a good approach...time to try dynamic 

programming! 

Recursive Solution to LCS Problem
The recursive LCS Formulation 
•  Let C[i,j] = length of the LCS of Xi and Yj, where 
•    Xi = 〈 x1, x2,..., xi 〉 and Yj = 〈 y1, y2,..., yj 〉  
•  Our goal:  C[m,n] (consider entire X and Y) 
•  Basis: C[0,j] = 0 and C[i,0] = 0 
•  C[i,j] is calculated as shown below (two cases): 

Case 1:  xi = yj (i, j > 0)
In this case, we can increase the size of the LCS of X i-1 and Yj-1
by one by appending xi = yj to the LCS of Xi-1 and Yj-1, i.e.,

C[i, j] = C[i-1, j-1] + 1

Case 2:  xi ≠ yj (i, j > 0)
In this case, we take the LCS to be the longer of the LCS of Xi-1 
and Yj, and the LCS of Xi and Yj-1, i.e.,

C[i, j] = max(C[i, j-1], C[i-1, j])

Top-Down DP Solution to LCS Problem
•  initialize C[i, 0] = C[0 ,j] = 0 for i = 0...m and j = 1...n 
•  initialize C[i, j] = NIL for i = 1...m and j = 1...n 

LCS(i, j) 
1.  if C[i, j] = NIL 
2.       if xi = yj then 
3.            C[i, j] = LCS(i-1, j-1) + 1 
4.       else 
5.            C[i, j] = max( LCS (i, j-1), LCS (i-1, j)) 
6.  return C[i, j] 

C is a two-dimensional array holding the solutions to subproblems. 

Bottom-Up DP Solution to LCS Problem
We now want to figure out the “right” order to solve the 
subproblems. 
 

To compute C[i, j], we need the solutions to: 
 C[i-1, j-1] (when xi = yj) 
 C[i-1, j] and C[i, j-1] (when xi ≠ yj ) 

If we fill in the C array in row major order, these dependencies will 
be satisfied. 

LCS(X, Y) 
1.  m = length[X] 
2.  n = length[Y] 
3.  for i = 0 to m do  C[i, 0] = 0 
4.  for j = 0 to n  do  C[0, j]=0 
5.  for i = 1 to m do 
6.      for j = 1 to n do 
7.           if xi = yj then C[i, j] = C[i-1, j-1] + 1 
8.           else C[i, j] = max (C[i, j-1], C[i-1, j]) 
9.  return C[m, n] 

Bottom-Up LCS DP

Running time = O(mn) (constant time for each entry in C[ ]) 

This algorithm finds the value of the LCS, but how can we keep  
track of the characters in the LCS? 

We need to keep track of which neighboring table entry gave 
the optimal solution to a sub-problem (break ties arbitrarily). 

 if xi = yj  the answer came from the upper left (diagonal) 
 if xi ≠ yj the answer came from above or to the left,  
 whichever value is larger (if equal, default to above).  
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Bottom-Up DP Solution to LCS Problem
Idea:  Save a pointer to 
find the path 
representing the 
longest common 
subsequence.  Use a 2-
dimensional array B[ ] 
to store the pointers 
(initially this array will 
be all NIL). 

LCS(X, Y) 
 1.  m = length[X] 
 2.  n = length[Y] 
 3.  for i = 0 to m do  C[i, 0] = 0 
 4.  for j = 0 to n do  C[0, j]=0 
 5.  for i = 1 to m do 
 6.      for j = 1 to n do 
 7.           if xi = yj then C[i, j] = C[i-1, j-1] + 1 
 8.                  B[i, j] = "      " 
 9.           else  
10.                 if C[i - 1, j]  >= C[i, j - 1] then 
11.                       C[i, j] = C[i - 1, j] 
12.                       B[i, j] = " ↑ " 
13.                 else C[i , j] = C[i, j - 1] 
14.                        B[i, j] = " ← " 

← 

Bottom-Up LCS DP

b    a       b

a

b

b

a

j   ⇒       0                 1             2            3    
i
⇓
0

1

2

3

4

0  0 0    0

0 0 1 1

0 1 1 2

0 1 1 2

0 1 2 2

↑ ↑ ↑
↑

↑↑
↑

↑

↑

↑

↑

↑

Complexity of LCS Algorithm

The running time of the LCS algorithm is O(mn), since 
each table entry takes O(1) time to compute. 
 
The running time of the Print-LCS algorithm is O(m + n), 
since one of m or n is decremented in each stage of the 
recursion. 


