Minimum Spanning Trees (Ch. 23)

Definition: Given an undirected graph G = (V, E), a
spanning tree of G is any subgraph of G that is a tree

Weighting edges

Assign a weight (a numerical value) to each edge of the
graph.

Examples:

1. a road network, the weights could represent the length of
each road;

2. a network of connecting flights, weights could represent
flight time;

3. a computer network, the weights could represent the
bandwidth of each bus and link.

Minimum Spanning Trees

Definition: Given an undirected graph G = (V, E) with weights on
the edges, a minimum spanning tree of G is a subgraph T C E
such that T:
o has no cycles (i.e., is a tree),
o connects all nodes in V, and
o hasa sum of edge weights that is minimum over
all possible spanning trees of G.

MST Property

MST property: Let G = (V, E) and let T be any spanning

tree of G. Suppose that for every edge (u,v) of G that is not
in T, if (u,v) is added to T it creates a cycle such that (u,v) is
a maximum weight edge on that cycle. Then T has the MST

property.

If there are 2 spanning trees T, and T, on G that both have
the MST property, then T, and T, have same total weight.

Minimum Spanning Trees

We will look at two “greedy algorithms” to find an MST of a
weighted graph: Kruskal’ s and Prim’s algorithms

A greedy algorithm makes choices in sequence such that
each individual choice is best according to some limited
“short-term”criterion that is not too expensive to evaluate
(no look-ahead is involved).

o Kruskal’ s MST Algorithm

- use a greedy strategy
- consider edges in increasing order of weight (sort edges)
- add edge to spanning forest F if it doesn’ t create a cycle.

Algorithm MST-Kruskal (G)
R =E // Ris initially set of all edges
F = // Fisset of edges in a spanning tree of a sub-graph of G
sort all edges of R in increasing order of weight
while (R is not empty)
remove the lightest-weight edge, (v,w), from R
if (v,w) does not make a cycle in F
add (vw) to F
return F

o h LN

Kruskal’ s MST Algorithm

Complexity:

ine 1- Sorting edges = ?? time

2-5 - Keeping the edges in a structure with min O(1) time
ine 3- Removal = ?? time per removal

ine 4 - Checking to see if edge creates a cycle = ?? time

Algorithm MST-Kruskal (G)
R =E // Ris initially set of all edges
F = // Fisset of edges in a spanning tree of a sub-graph of G
sort all edges of R in increasing order of weight
while (R is not empty)
remove the lightest-weight edge, (v,w), from R
if (v,w) does not make a cycle in F
add (vw) to F
return F

o h LN

Disjoint Sets (Ch. 21)

A disjoint-set data structure
0 maintains a collection of disjoint subsets
C =s,,S,,...,S,, Where each s; is identified by a
representative element (set id).

Operations on C:
« Make-Set(x): creates singleton set {x}

« Union(x,y): xandy and are id’s of their resp. sets, s, and s,;
uniond operation replaces sets s, and s, with a set that is s, U
s, and returns the id of the new set.

* Find-Set(x): returns the id of the set containing x.

Data Structures for Disjoint Sets

Applications include network algorithms such as
distributed mutual exclusion as well as finding the
connected components of a graph.

PROBLEM IS HOW TO KEEP ELEMENTS IN A SET
SUCH T!

WE

HAT IT IS EASY TO

= TE

DETERMINE

“R A NEW EDGE W

CYCLE.

L CREATE A

Data Structures for Disjoint Sets

Comment 1: The Make-Set operation is only used during the
initialization of a particular algorithm.

Comment 2: We assume there is an array of pointers to each
X € U (so we never have to search for a particular
element, just for the id of the set x is in).

Thus the problems we’re trying to solve are how to join
the sets (Union) and how to find the id of the set
containing a particular element (Find-Set) efficiently.

Rooted Tree Representation of Sets

Idea: Organize elements of each set as a tree with id = element at the
root, and a pointer from every child to its parent (assuming we have an

array of pointers to each element in the tree).
Make-Set(x): (initial) O(1) time

&%}) Find-Set(x):
T - start at x (using pointer provided

é to find x) and follow pointers up to
i the root.

- return id of root

W-C running time is O(n)

U = Union(x, y):
Cg\@ Cgb - x and y are ids (roots of trees).
- make x a child of y and return y

running time is O(1)

Weighted Union Implementation for Trees

Idea: Add rank field to each node x holding the number of nodes in
subtree rooted at x (only care about weight field of roots, even though
other nodes maintain value too). When doing a Union, make the smaller
tree (with lower rank at the root) a subtree of the larger tree (with
greater rank at the root).

Make-Set(x): O(1)
Find-Set(x):
- ?7?? See next slide O(n) w.c.)
U —
Union(x, y): \Q Cgb \Q
- X and y are ids (roots of trees). Cg
- make node (x or y) with smaller

rank the child of the other
- O(1) time

Weighted Union

Theorem: Any k-node tree created by k-1 weighted Unions has height O(lg k)
(assume we start with Make-Set on k singleton sets). We want to show that

trees stay “short”.

Proof: By induction on k, the number of nodes.

Basis: k=1, height=0=1g1 <true>

Inductive Hypothesis: Assume true for all i < k.

Inductive Step: Show true for k. Suppose the last operation performed was
union(x,y) and that if m = wt(x) and wt(x) < wt(y), that m < k/2.

-
(x)

HESR/ON

/i

h

Show h = max(h, + 1, h)) < Ig k. The IHOP must hold for trees x and y.

e hy+1<lg(m)+1=<lg(k/2)+1=Igk-1+1=Igk

Path Compression Implementation

Idea: extend the idea of weighted union (i.e., unions still weighted), but
on a Find-Set(x) operation, make every node on the path from x to the
root (the node with the set id) a child of the root.

Find-Set(x) still has worst-case time of O(Ign), but subsequent Find-Sets for
nodes that used to be ancestors of x (or subsequent finds for x itself) will
now be very fast: O(1).

Path Compression Analysis

The running time for m disjoint-set operations on n elements is
O(mlg*n)

The full proof is given in our textbook.

Kruskal’s MST Algorithm

Idea: Make each node a singleton set.

Sort edges, then add the minimum-weight edge (u,v) to the MST if u
and v are not already in same sub-graph.

Use weighted union with path compression during find operations to
determine when nodes are in same sub-graph.

MST-Kruskal (G) /** G = (V, E) **/
1. T=9
2. foreachveV
make-set(v)
3. sort edges in E by increasing (non-decreasing) weight
4. foreach (uv) €E
if find-set(u) # find-set(v)
T=TuUu{(uVv)} [**addedgeto MST **/
union(find-set(u), find-set(v))
5. returnt

Kruskal’ s MST Algorithm

Running Time

* initialization (lines 1-3) —
O(1)+O(V)+O(EIgE)=0(V+EIgE)

* E iterations of for-loop (line 4)
- 2E finds — O(E Ig*E) time
- O(V) unions = O(V) time (at most V — 1 unions)

o total: O(V+ EIgE) =0(ElgV)time

- (note lg E = O(IlgV) since E = 0 (V2),soIgE = O(21g V)).

MST-Kruskal (G)

1. T=9
2. foreachveV
makeset(v)

3. sort edges in E by increasing weight
4. for each (u,v) € sorted E
if find (u) # find(v) /** doesn’t create a cycle **/
T=TU{(u,v)}/** add edge to MST **/
union(find(u), find(v))
5. returnT

List the edges in the above graph in a possible order they
are added to the MST by Kruskal’ s algorithm. Which edges
would not be added?

MST-Kruskal (G)

1. T=9
2. foreachveV
makeset(v)

3. sort edges in E by increasing weight
4. foreach (u,v)€E
if find (u) # find(v) /** doesn’t create a cycle **/
T=TU{(u,v)}/** add edge to MST **/
union(find(u), find(v))
5. returnt

Is there only 1 MST for this graph?

Correctness of Kruskal s Algorithm

Theorem: Kruskal's algorithm produces an MST on G = (V, E).

Proof: Clearly, the algorithm produces a spanning tree. We need
to argue that it is an MST.

Suppose, in contradiction, the algorithm does not produce an MST.
Suppose that the algorithm adds edges to the tree T' in order
€1, €5, vury €yuey €11

Let i be the value such that e, e,, ..., €. is a subset of some MST T,
but e, e,, ..., .4, € is not a subset of any MST.

Consider T U {e;}

e T U {e} must have a cycle c involving €

e In the cycle c there is at least one edge that is not in e;, e,, ..., e_; (since
the algorithm doesn’ t pick an edge that creates a cycle and it picked e)).

Correctness of Kruskal’s Algorithm (cont.)

e lete* betheedgeinT U {e} that forms a cycle when e, is added to
T thatisnotiney, e, ..., €

Then wt(e) < wt(e®), otherwise the algorithm would have picked e*
next in sorted order when it picked e, (by assumption that T, with
e*, is not an MST because the algorithm does not find an MST).

Claim: T'=T-{e"} U {e} isa MST
e T'is a spanning tree since it contains all nodes and has no cycles.
o wWt(T') <wt(T), soTis nota MST

This contradiction means our original assumption must be wrong
and therefore the algorithm always finds an MST. -

Prim’s MST Algorithm

Algorithm starts by selecting an arbitrary starting vertex, and
then “branching out” from the part of the tree constructed so
far by choosing a new vertex and edge at each iteration.

Idea:
- always maintain one connected subgraph (different from Kruskal’s)
- at each iteration, choose the lowest weight edge that goes out from
the current tree (a greedy strategy).

Prim’s MST Algorithm

Idea: Use a min priority
queue PQ that uses the wt field
as a key.

Associate with each node v two

fields:

« vwt: ifvisn’ tinT, then
holds the min wt of all the
edges from vtoanodeinT.

« v if visn'tin T, holds the
name of the node u in T such
that wt(u,v) is v’ s best edge
tonode in T.

As min wt edges are discovered
they are added to T.

MST-Prim (G, r)
1. insert each v €V into PQ with v.wt = o,
v =7
r.wt =0 // root of MST
while PQ # &
u = PQ.extract-min()
add edge (u.w,u)to T
for each neighbor v of u
if ve PQ and wt(u,v) < v.wt
VT =U
v.wt = wt(u,v)

RSN EPD

Start at node a: PQ contains all nodes

PQa b ¢ d e f g h
T2 N2 B % T % N 7 B 0 T % N 9 B)

wt | 0 oo oo oo 0O 00 00 00
iteration 1: PQ = PQ — {a}

PQlgx b ¢ d e f g
T|\J a J a a O

wt| O 1] o 6 3 o

T ={D} (change b, d, e) because of

Prim’s MST Algorithm

MST-Prim (G, r)

edges (a,b), (a,e), and (a,d)

1.

LRIANRERDN

insert each v € V into PQ with
vwt =, vt = J
r.wt =0 // root of MST
while PQ # &
u = PQ.extract-min()
add edge (u.t,u)to T
for each neighbor v of u
if ve PQ and wt(u,v) < v.wt
VT =U
v. wt = wt(u,v)

iteration 2: PQ =PQ - {b}

PQgx BR ¢ d e f g h
T |J a b a a O 3 U
wtl O 1 6 6 3 o oo o

T = {(b,a)} (change c due to edge (b,c))

iteration 3: PQ =PQ — {e}

PQxk R ¢c d ® f g h
T ¢ a e e a J e e
wtl O 1 3 2 3 o 2 8

T={(b,a), (e,a)} (change c,d, g, h) due

to (e,c), (e,d), (e,g), and (e,h)
iteration 4: PQ =PQ — {d}

PQx B ¢ & ® f g h
T| | a e e a Jd e e
wtl 0O 1 3 2 3 oo 2 8

MST-Prim (G, r)

1.

LRIANRERDN

insert each v € V into PQ with
vwt =, vt = J
r.wt =0 // root of MST
while PQ # &
u = PQ.extract-min()
add edge (u.t,u)to T
for each neighbor v of u
if ve PQ and wt(u,v) < v.wt
VT =U
v. wt = wt(u,v)

T={(b,a), (e,a),(d,e)} (no change to wt field at any node)

iteration 5: PQ =PQ — {g}
PQx R ¢ & ¥ f ¥ h MST-Prim (G, r)
€ 8

1. insert each v €V into PQ with
vwt =, Vvt =
r.wt =0 // root of MST
while PQ # &
u = PQ.extract-min()
add edge (u.,u)to T
for each neighbor v of u
if ve PQ and wt(u,v) < v.wt
VT =u
v. wt = wt(u,v)

T|J a e e a g

wtil0O I 3 2 3 4 2 7

T={(b,a), (e,a),(d,e), (g,e)} (change f & h)
due to edges (f,g) and (g,h)

iteration 6: PQ =PQ — {c}
PQx B & & ®x f ¥ h
n|Y a e e a g e g

wtl O 1 3 2 3 4 2 7
T ={(b,a), (e,a), (d,e), (g.€), (c,e)} (no change to wt field at any node)

iteration 6: PQ = PQ — {f}
PQx R & o& ® kXK X h
n|Y a e e a g e g
wtlO 1 3 2 3 4 2 7

RSN ERD

T={(b,a), (e,a), (de), (g.e),(ce), (f,2)} (no change to wt field at any node)

iteration 7: PQ=PQ-{h} =

PQx B & o& ¥ XK ¥ h
n|Y a e e a g e ¢
wtlO 1 3 2 3 4 2 7

MST-Prim (G, r)
1. insert each v €V into PQ with
vwt =, Vi = J
r.wt = 0 // root of MST
while PQ # &
u = PQ.extract-min()
add edge (u.t,u)to T
for each neighbor v of u
if vE PQ and wt(u,v) < v.wt
VT =u
v. wt = wt(u,v)

LRIINRERD

T = {(b,a), (e,a), (d,e), (g.e), (c,e), (fg), (h,g)}

DONE

Running Time of Prim’s MST Algorithm

e Assume PQ is implemented with a binary min-heap

o How can we tell if v € PQ without searching heap?

MST-Prim (G, r)

1.

LRI ERRD

insert each v € V into PQ with
vwt = oo, vt = J
r.wt =0 // root of MST
while PQ # &
u = PQ.extract-min()
add edge (u.,u)to T
for each neighbor v of u
if ve PQ and wt(u,v) < v.wt
VT =Uu
v. wt = wt(u,v)

Running Time of Prim’s MST Algorithm

MST-Prim (G, r)
1. insert each v €V into PQ with
vwt=o, vt =J
r.wt =0 // root of MST
while PQ # J
u = PQ.extract-min()
add edge (u.w,u) to T
for each neighbor v of u
if vE PQ and wt(u,v) < v.wt
VT =Uu
v. wt = wt(u,v)

Running time:
e initialize PQ: O(V) time

o while loop...
in each of V iterations of while loop:
extract min = O(lg V) time
update T = O(1) time
==>0(V Ig V) total

LRI ERD

over all iterations (combined):
check neighbors of u (line 6-9): O(E) iterations
condition test and update « = O(1) time
decreasing v’ s wt= O(lg V) time = O(E Ig V)
So, the grand total is:
O(VIgV + ElgV)=0(E Ig V) (asymptotically, the
same as Kruskal’ s)

Correctness of Prim’s Algorithm

Let T, be the tree after the ith iteration of the while loop

Lemma: For all i, T,is a subtree of some MST of G.

Proof: by induction oni

Basis: wheni =0, T, = J, ok because empty is trivial
MST subtree

IHOP: Assume T, is a subtree of some MST M
Induction Step: Show that T, ., is a subtree of some MST

Let (u,v) be the edge added in iteration i + 1, then there
are 2 cases:

Correctness of Prim’ s Algorithm

case 1: (u, v) is an edge of M.
Then clearly T.,, is a subtree of M (0k)

case 2: (u, Vv)is not an edge of M
We know there is a path p in M from u to v (because M is a ST)

Let (X, y) be the first edge in p with x in T, and y not in T, We know
this edge exists because the algorithm will not add edge (u,v) to a cycle.

M'=M-{(x, y)} U{(u, v)} is another spanning tree.

Now we note that
wt(M") = wt(M) — wt(x, y) + wt(u, v) = wt(M)
since (u, v) is the minimum weight outgoing edge from T.

Therefore, M' is also a MST of G and T, is a subtree of M'.
|

