
4/29/19

1

Complexity Classes (Ch. 34)

The class P:  class of problems that can be solved in time 
that is polynomial in the size of the input, n. 

•  if input size is n, then the worst-case running time 
is O(nc) for constant c. 

•  problems in P are considered “tractable” (if not in 
P, then not tractable) 

 

Complexity Classes

The class NP:  class of problems with solutions that can be 
verified in time that is polynomial in the size of the input. 

•  Imagine we are given a “certificate” of a solution 
(really a potential solution) of a problem. Then the 
problem is in NP if we can verify that the certificate 
is correct in time polynomial in the size of the input. 

 
•  Relies on the fact that checking a solution is easier 

than computing it  (e.g., check that a list is sorted, 
rather than sorting it.) 

NP-Completeness
The class NP-Complete (NPC):  class of the “hardest” 
problems in NP. 

•  this class has property that if any NPC problem can 
be solved in polynomial time, then all problems in NP 
can be solved in polynomial-time. 

•  actual status of NPC problems is unknown 
-  No polynomial-time algorithms have been 

discovered for any NPC problem 
-   No one has been able to prove that no polynomial-

time algorithm can exist for any of them 
•  Informally, a problem is in NPC if it is in NP and is as 

“hard” as any problem in NP. 
•  we will use reductions, to grow our set of NPC 

problems from one initial problem. 

Some Examples of P and NP Problems
SSSP problem in a directed graph, even with negative edge 
weights, is in P (i.e., O(VE) time) 

Finding the longest simple path between two nodes is NPC, even if 
all edge weights are 1 (because exhaustive search is exponential 
time). 

An Euler tour of a connected, directed graph is a cycle that 
traverses each edge of G exactly once, although it may visit a 
vertex more than once.  We can determine whether a graph has 
an Euler tour and find the edges of such a tour in O(E) time. 

A hamiltonian cycle of a directed graph is a simple cycle that 
contains each vertex in V (each vertex only once).  Determining 
whether a directed graph has a hamiltonian cycle is NPC. 

 P, NP, NPC...how are they related?
Any problem in P is also in NP, since if a problem is in 
P then we can solve it in polynomial-time without 

even being given a certificate. 

       So P ⊆ NP.   

   By definition, NPC ⊆ NP 

 P, NP, NPC...how are they related?

   Is NP ⊆ P ??? 

•  open problem, but intuition says no 
•  probably the most famous open problem in CS 
•  seems plausible that the ability to guess and verify 

a solution in polynomial-time is more powerful 
than computing a solution from scratch (in 
deterministic polynomial-time) 

•  so...we think  P ≠ NP, but no one has proven it 
one way or the other (despite enormous effort). 



4/29/19

2

 P, NP, NPC...why do we care?
So...why do we care to know whether a problem is NP-Complete? 

•  if it is, then finding a polynomial-time algorithm 
to solve it is unlikely. 
 

•  better to spend your time looking for: 
 

o  an efficient approximation algorithm to find 
solution close  to optimal 

o  heuristics that give correct answer with high 
probability 

 P, NP, NPC...why do we care?
So...why do we care to know whether a problem is NP-Complete? 

•  The set of "hardest" problems, the NPC 
problems, includes many problems of 
importance in science, engineering, Operations 
Research, and business, e.g.: 

•  traveling salesman 
•  bin packing 
•  knapsack problem   
•  vertex cover and graph coloring 
•  integer linear programming 
•  etc… 

 

 Decision Problems

Showing problems are either P or NP confines us  
to the realm of decision problems (problems with 
yes/no answers) 
 
Example:  Shortest paths 

•  general (optimization) problem:  What is the length 
of the shortest x to y path? 

•  decision problem:  Is there an x to y path of length 
≤  k? 

 Decision Problems
Rationale for studying decision problems: 

•  if the decision problem is hard (i.e., not solvable in 
polynomial time), the general problem is at least as 
hard  

•  for many problems, we only need polynomial extra 
time to solve the general problem after we solve the 
decision problem 

•  decision problems are easier to study and results 
are easier to prove 

•  all general problems can be rephrased as decision 
problems 

 Encoding Problem Instances
•  To solve a problem with a computer, the problem 

instances must be encoded in a way that the 
computer can interpret the encoding and such that 
the encoding will not influence the running time 
unduly 
 
•  An encoding of a set S of problem instances is a 

mapping from S to the set of binary strings ({0,1}*). 
 
•  In formal complexity theory, we use encodings to map 

abstract problems to concrete problems.  

Formal-Language Terminology���

•  Alphabet (Σ): finite set of symbols, e.g.,  
-  Σ = {0, 1} (binary alphabet)  

-  Σ = {a, b, c} (alphabet consisting of three letters) 

-  Σ = set of all ASCII characters 
 

•  String = finite sequence of symbols chosen from 
some alphabet, e.g., 01101 or abacaaba. 

 

•  Language (L) = set of strings chosen from some 
alphabet (also stated:  “a set of strings over some 
alphabet”) 



4/29/19

3

Languages ���
•  Kleene star (Σ*): set of all strings over Σ 
  

-  The number of strings in  Σ* is infinite, since there 
is no bound on length of strings 

 

•  Language = subset of Σ* 

 The strings composing a language are a set of 
problem instances. 
 
A LANGUAGE is equivalent to a PROBLEM in 
this framework.   

 

Example: Languages
•  The set of all binary strings consisting of some number 

of 0's followed by an equal number of 1's; that is, λ; 01; 
0011; 000111;… 

•  The set of strings over {a,b} in which each occurrence 
of a is immediately preceded by b. 

•  C (the set of C programs that can be compiled). 

•  English. 

•  The set of graphs that contain a Hamiltonian cycle. 

•  The set of satisfiable boolean expressions. 

Language Acceptance���
 

 Α decision algorithm A accepts a string x if, given 
input s, the algorithm's output is 1 (for "yes"), i.e., 
A(x) = 1.  

  

 Decision algorithm A rejects a string x if A(x) = 0. 
 

 The language L accepted by A is the set of strings     
L = {x ∈ {0,1}* : A(x) = 1} 

 A language L is decided by A if every binary string in L 
is accepted by A and every binary string not in L is 
rejected by A. 

 

Language-Theoretic Definition of 
the classes P and NP ���

 

•  P = {L ⊆ {0,1}* : there exists an algorithm 
  A that decides whether the input string is a yes 

or no instance of L in polynomial-time} 

   

•  NP = {L ⊆ {0,1}* : there exists a certificate y with  
             |y| = O(|x|c) such that A(x,y) = 1}  A is a 2-    

     input algorithm that verifies membership in L  
     in polynomial-time  

 
     (here, x is input encoding and y is certificate A 

     uses to decide if x ∈ L ) 

The general Traveling Salesman Problem: 
 

• instance:  a set of cities and the distance 
between each pair of cities (given as a 
graph). 

• goal:  Find a tour of minimum cost. 
 (optimization problem) 

 Example:  Traveling Salesman Problem (TSP)���
Decision Version

• instance:  a set of cities and the distance between 
each pair of connected cities (given as a graph), 
and a bound B. 

• question:  is there a “tour” that visits every city 
exactly once, returns to the start, and has total 
distance ≤ B? 



4/29/19

4

 Example:  Traveling Salesman Problem (TSP)
Is TSP ∈  NP? 
To determine this, we need to show that we can verify 
a given solution (list of cities) in polynomial-time (i.e., 
time O(nk), where n is the number of cities and k is a 
constant). 
 

Given an encoding of a TSP instance (a graph) and a 
certificate (a list of all cities in the order they are 
visited), 

•  check that each city is in certificate exactly once 
•  check that the start city is also the end city 
•  check that total distance  ≤  B 
 
All can be done in O(n) time, so TSP ∈ NP.  

 Reductions
Let L1 and L2 be two decision problems.  Suppose we have a 
polynomial-time algorithm A2 to decide L2 but no algorithm to 
decide L1.  We can use A2 to decide L1 as well (still in 
polynomial-time). 

All we need to do is find a polynomial-time reduction f  
from L1 to L2 (L1 ≤p L2 ): 
•  f transforms an input for  L1 into an input for L2 such 

that the transformed input is a yes-input for L2 iff the 
original input is a yes-input for  L1 

•  f must be computable in polynomial-time (in the size of 
the input) 

•  if such an f exists, we say L1 ≤ p L2  

 Polynomial-time Reduction
We have a problem B that we know how to solve in 
polynomial-time and we would like to have a 
polynomial-time algorithm for problem A. We want to 
show that A ≤p B (B is known to be “easy” and A’s 
running time is unknown) 
 
Suppose we have a procedure that transforms any 
instance α of A into an instance β of B with the 
following characteristics: 
 
  1.  The transformation is polynomial-time 
  2.  The answers are the same.  That is, the   
        answer for α is “yes” iff the answer for β is  
        also “yes” 

 Polynomial-time Reduction for “easiness”
We call this procedure a polynomial-time “reduction 
algorithm” because it gives us a way to show that A 
can be solved in polynomial-time (p-time). 

1.  Given an instance α of A, use a p-time reduction 
algorithm to transform it to an instance β of B ∈ P. 

 

2.  Run the p-time decision algorithm for B on the 
instance β 

 

3.  Use the answer for β as the answer to α 

In simple terms, we use the “easiness” of problem B 
to prove the “easiness” of problem A by showing  
                                    A ≤p B. 

 Polynomial-time Reduction for “NPC-ness”
We can also use reduction to show that a problem is NPC.   
We can use a reduction to show that no p-time algorithm 
can exist for a particular problem B, assuming none exists 
for A. 

Given an instance α of A for which we have no  
evidence of a p-time solution and a reduction algorithm 
to transform instance α of A to instance β of B, 
 

1.  Convert the input α for A into input β for B 
2.  Run the decision algorithm for B on the instance β 
3.   If B has a p-time algorithm, then using the p-time 

transformation algorithm, we could convert an 
instance of A into an instance of B and solve A in  
 p-time, a contradiction to the assumption that no  
 p-time solution exists for A.  

 Reduction
To show that a problem Q is NPC, choose some known 
NPC problem P and reduce P to Q. 

1.  Since P is NPC, all problems R in NP are reducible to P; 
that is, R ≤p P.  

 

2.  Show P ≤p Q. 
 
 

3.  Then all problems R in NP satisfy R ≤p Q, by transitivity 
of reductions. 
 

4.  Therefore, Q is NPC. 



4/29/19

5

 Polynomial-time Reduction Ex:  ���
Hamiltonian Circuit Problem to TSP

The Hamiltonian Circuit Decision Problem (HC): 
Instance:  An undirected graph G = (V, E) 
Question:  Is there a simple cycle in G that includes every node? 

The Traveling Salesman Decision Problem (TSP): 
Instance:  A set of cities, distances between each city-pair, and 
bound B 
Question:  Is there a "tour" that visits every city exactly once, returns 
to the start, and has total distance ≤ B? 

 Polynomial-time Reduction Ex:  HC to TSP

Claim:  HC  ≤p  TSP 
Proof:  To prove this, we need to do 2 things: 
 
1.  Define the transformation f mapping inputs for HC 

decision problem into inputs for TSP, and show this 
mapping can be computed in polynomial-time in size 
of HC input. 
 
 -  f must map the input G = (V, E) for HC into a list of  

        cities, distances, and a bound B for input to TSP 
 

2.  Prove the transformation is correct. 

 Polynomial-time Reduction Ex:  HC to TSP

1. Definition of transformation f for HC ≤p TSP: 
Given the HC input graph G = (V, E) with n nodes:  
 

•  create a set of n cities labeled with names of nodes in V. 
 

•  set intercity distances d(u,v) =    1  if (u, v) ∈ E 
            2  if (u, v) ∉ E 
 

•  set bound B = n (since HC circuit must be of length n) 

Note:  f can be computed in O(n2) time.  Describe an   
         algorithm to do so. 

 Polynomial-time Reduction Ex:  HC to TSP
2.  Prove the transformation f for HC ≤p TSP is correct  
 
We will prove this by showing that x ∈ HC  iff f(x) ∈ TSP  
 
2(a)  if x ∈ HC, then f(x) ∈  TSP 
2(b)  if f(x) ∈  TSP, then x ∈ HC 
 
Proof of 2(a): 
o  x ∈ HC means HC input G = (V, E) has a hamiltonian circuit.  Wlog, 

suppose it is the ordering (v1, v2, ..., vn, v1). 
o  Then (v1, v2, ..., vn, v1) is also a tour of the cities in f(x), the 

transformed TSP instance. 
o  The distance of the tour (v1, v2, ..., vn, v1) is n (= B), since each 

consecutive pair is connected by an edge and all edges have wt = 1. 
o  Thus, f(x) ∈ TSP, as required. 

Polynomial-time Reduction Ex:  HC to TSP

Proof of 2(b):  if f(x) ∈  TSP, then x ∈ HC 
o  f(x) ∈ TSP means there exists a tour in TSP input of cities that has a 

total distance ≤ n = B.  Wlog, suppose the tour goes through cities (v1, 
v2, ..., vn, v1). 

o Since all intercity distances are either 1 or 2 in f(x), and there are n 
intercity "legs" in the tour, each "leg" in tour must have distance 1. 

o So G must have an edge between each consecutive pair of cities on 
the tour, and therefore (v1, v2, ..., vn, v1) must be a hamiltonian circuit 
in G 

o  Thus, x ∈  HC, as required. 

 Polynomial-time Reduction Ex:  HC to TSP

Since HC ≤p TSP, then 
      o  If there exists a polynomial-time algorithm for 

TSP, then there exists a polynomial-time 
algorithm for HC (HC is no harder than TSP) 

 
      o  If there does not exist a polynomial-time 

algorithm for HC, then there does not exist a 
polynomial-time algorithm for TSP 
 (i.e., TSP is at least as hard as HC) 



4/29/19

6

 NP-Completeness...and our use for 
polynomial-time reductions...

Note:  If L only satisfies condition 2, it is called NP-Hard.  I.e., 
for NP-hard problems, no one has shown that a problem  
instance can even be verified in polynomial time. 

Definition:   
A decision problem L is NP-Complete (NPC) if: 
1.  L ∈  NP, and  
2.  for every L' ∈ NP, L' ≤p L  (i.e., every L' in NP can be 

transformed to L -- so L is at least as hard as every 
problem in NP). 

An example of an NP-hard problem that is not NPC is the 
Halting Problem, for which a solution can’t be verified in 
polynomial time. 

Theorem 34.4:  Suppose L ∈ NPC: 
 
   o  if there exists a polynomial-time algorithm for L, 

then there exists a polynomial-time algorithm for 
every L' ∈  NP, i.e., P = NP 

 
   o  if there does not exist a polynomial-time 

algorithm for L, then there does not exist a 
polynomial-time algorithm for any L' ∈  NPC, 
i.e., P ≠ NP 


