
4/29/19

1

Dynamic Programming (Ch. 15)
Dynamic programming can provide a good solution for
problems that take exponential time to solve by brute-force
methods.

Typically applied to optimization problems, where there are
many possible solutions, each solution has a particular value,
and we wish to find the solution with an optimal (minimal or
maximal) value.

For many of these problems, we must consider all subsets of
a possibly very large set, so there are 2n possible solutions --
too many to consider sequentially for large n.

Divide-and-conquer algorithms find an optimal solution
by partitioning a problem into independent subproblems,
solving the subproblems recursively, and then
combining the solutions to solve the original problem.

Dynamic programming is applicable when the sub-
problems are not independent, i.e. when they share
subsubproblems.

Dynamic Programming

Dynamic Programming
Developed by Richard Bellman in the 1950s. Not a specific algorithm,
but a technique (like divide-and-conquer).

This process takes advantage of the fact that subproblems have optimal
solutions that lead to an overall optimal solution.

DP is often useful for problems with overlapping subproblems. These
algorithms typically solve each subproblem once, record the result in a
table, and use the information from the table to solve larger problems.

Computing the nth Fibonacci number is an example of a non-
optimization problem to which dynamic programming can be applied.

 F(n) = F(n-1) + F(n-2) for n >= 2

 F(0) = 0 and F(1) = 1.

Fibonacci Numbers
A straightforward, but inefficient algorithm to compute the nth Fibonacci
number uses a top-down approach:

 RFibonacci (n)
 1. if n = 0 then return 0
 2. else if n = 1 then return 1
 3. else return RFibonacci (n-1) + RFibonacci (n-2)

This approach uses calls on the same number many times, leading to an
exponential running time.

Fibonacci Numbers

A more efficient, bottom-up approach starts with 0 and works up to n,
requiring only n values to be computed:

 Fibonacci(n)

 1. f[0] = 0
 2. f[1] = 1
 3. for i = 2 … n
 4. f[i] = f[i-1] + f[i-2]
 5. return f[n]

The technique of storing answers to smaller subproblems is called bottom-
up programming.

 Rod Cutting Problem

Problem: Find optimal way to cut a rod of length n

Given: rod of length n and a table of prices for rods of
 length 1..n

The table specifies that a rod of length i has a price pi

Optimization problem is to find best set of cuts to get
maximum price where

•  Each cut is integer length
•  Can use any number of cuts, from 0 to n – 1
•  There is no cost for a cut

4/29/19

2

 Rod Cutting Problem

Example rod lengths and values:

Can cut rod in 2n-1 ways since each inch can have a cut
or no cut.

Example: rod of length 4:

Best price:
 = two 2-inch pieces
 = p2 + p2
 = 5 + 5 = 10

Length i 1 2 3 4 5 6 7 8
Price pi 1 5 8 9 10 17 17 20

4 lengths
1,3 1 + 8 = 9
2,2 5 + 5 =10
3,1 8 + 1 = 9

1,1,2 1 + 1 + 5 = 7
1,2,1 1 + 5 + 1 = 7
2,1,1 5 + 1 + 1 = 7

1,1,1,1 1 + 1 + 1 + 1 = 4

 Calculating Maximum Revenue

Compute the maximum revenue (ri) for rods of length i

Let’s compute these values
from the bottom up for i=4

•  1: 0 cuts = p1
•  2: Compare p2, p1+p1
•  3: Compare p3, p2+p1,
 p1+p1+p1
•  4: Compare p4, p1+p3,

 p3+p1, p2+p2, p1+p1+p2,
 p1+p2+p1, p2+p1+p1,

 p1+p1+p1+p1

Length i 1 2 3 4 5 6 7 8
Price pi 1 5 8 9 10 17 17 20

i ri optimal solution
1 1 1 (no cuts)
2 5 2 (no cuts)
3 8 3 (no cuts)
4 10 2 + 2
5 13 2 + 3
6 17 6 (no cuts)
7 18 1 + 6 or 2 + 2 + 3
8 22 2 + 6

Cut-Rod
 Recursive, top-down implementation:

Cut-Rod(p,n)
 1. if n == 0
 2. return 0
 3. q = negative infinity
 4 for i = 1 to n
 5. q = max(q, p[i] + CutRod(p, n – 1))
 6. return q

T(n) = 2n

Bottom-Up-Cut-Rod
 Non-recursive, bottom-up implementation:

Bottom-Up-Cut-Rod(p,n):
1.  let r[0..n] be a new array
2.  r[0] = 0
3.  for j = 1 to n
4.  q = negative infinity
5.  for i = 1 to j
6.  if q < p[i] + r[j – i]
7.  q = p[i] + r[j – i]
8.  r[j] = q
9.  return r[n]

T(n) = n2

r is the maximum
revenue for each
rod size.

Extended Bottom-Up-Cut-Rod
Non-recursive, bottom-up implementation that allows the
enumeration of the max valued sequence of lengths:

Extended-Bottom-Up-Cut-Rod(p,n):
1.  let r[0..n] and s[0..n] be new arrays
2.  r[0] = 0
3.  for j = 1 to n
4.  q = negative infinity
5.  for i = 1 to j
6.  if q < p[i] + r[j – i]
7.  q = p[i] + r[j – i]
8.  s[j] = i
9.  r[j] = q
10.  return r[n] and s[n]

r is the maximum
revenue for each
rod size.

s is the optimal size
of the first piece to
cut off.

Print-Cut-Rod-Solution(p, n)
 Takes a price table p and a rod size n and calls
 Extended-Bottom-Up-Cut-Rod

Print-Cut-Rod-Solution(p,n):
1.  (r, s) = Bottom-Up-Cut-Rod(p,n)
2.  while n > 0
3.  print s[n]
4.  n = n – s[n]

4/29/19

3

Matrix-Chain Product
If A is an m × n matrix and B is an n × p matrix, then

 A ⋅ B = C is an m × p matrix

and the time needed to compute C is O(mnp).

•  there are mp elements of C
•  each element of C requires n scalar multiplications and n-1
 scalar additions

Matrix-Chain Multiplication Problem:

Given matrices A1, A2, A3, ..., An, where the dimension of Ai is pi-1 × pi,
determine the minimum number of multiplications needed to compute
the product A1 ⋅ A2 ⋅ ... ⋅ An. This involves finding the optimal way to
parenthesize the matrices.

For more than 2 matrices, there exists more than one order of multi-
plication.

Matrix-Chain Product
The running time of a brute-force solution (exhaustively checking all ways to
parenthesize 2 matrices) is:

 T(n) = 1 if n=1,

 = if n ≥ 2

Here, P(k) is the way to parenthesize first k matrices and P(n – k) is the way
to parenthesize the rest.

Hopefully, we can do better using Dynamic Programming.

P(k)P(n− k)
k=1

n−1

∑ =Ω(2n)

Matrix-Chain Product Example
A1 (4 × 2) A2 (2 × 5) A3 (5 × 1)

× ×

(A1 ⋅ A2) ⋅ A3
M1 = A1 ⋅ A2: requires 4 ⋅ 2 ⋅ 5 = 40 multiplications, M1 is 4 × 5 matrix
M2 = M1 ⋅ A3: requires 4 ⋅ 5 ⋅ 1 = 20 multiplications, M2 is 4 × 1 matrix
–> total multiplications = 40 + 20 = 60

A1 ⋅ (A2 ⋅ A3)
M1 = A2 ⋅ A3: requires 2 ⋅ 5 ⋅ 1 = 10 multiplications, M1 is 2 × 1 matrix
M2 = A1 ⋅ M1: requires 4 ⋅ 2 ⋅ 1 = 8 multiplications, M2 is 4 × 1 matrix
–> total multiplications = 10 + 8 = 18

Two ways to parenthesize this product:

p = (4, 2, 5, 1) dimension array

The order
of mult can
make a
difference

How do we
find the
minimum
over all
possibilities?

Matrix-Chain Product
The optimal substructure of this problem can be given with the
following argument:

Suppose an optimal way to parenthesize Ai Ai+1…Aj splits the product
between Ak and Ak+1. Then the way the prefix subchain Ai Ai+1…Ak is
parenthesized must be optimal. Why?

If there were a less costly way to parenthesize Ai Ai+1…Ak, substituting
that solution as the way to parenthesize Ai Ai+1…Aj gives a solution with
lower cost, contradicting the assumption that the way the original group
of matrices was parenthesized was optimal.

Therefore, the structure of the subproblems must be optimal.

Matrix-Chain Product – Recursive Solution
A3 (5 × 1)A1 (4 × 2) A2 (2 × 5)

× ×

p = (4, 2, 5, 1)

Let M[i,j] = min number of mults to
compute Ai ⋅ Ai+1⋅ ... ⋅ Aj, where
dimension of Ai ⋅ Ai+1⋅ ... ⋅ Aj is pi-1 × pj
M[i,i] = 0 for i = 1 to n, and
M[1,n] is the solution we want.

p is numbered from 0 to n and pi is p[i].

M[i,j] can be determined as follows:

 M[i,j] = min(M[i,k] + M[k+1, j] + pi-1 pk pj), where i ≤ k < j,

where M[i,j] equals the minimum cost for computing subproducts Ai…kAk+1…j
plus the cost of multiplying these two matrices together. Each matrix Ai is
dimension pi-1 x pi, so computing matrix product Ai…kAk+1…j takes pi-1 pk pj
scalar multiplications.

Matrix-Chain Product – Recursive Solution

A3 (5 × 1)A1 (4 × 2) A2 (2 × 5)

× ×

p = (4, 2, 5, 1)

RMP(p, i, j) // p is array of dimensions, initially i = 1, j = # of matrices
1. if i = j return 0 // nothing need be done with a single matrix

2. M[i,j] = ∞
3. for k = i to j-1
4. q = RMP(p, i, k) + RMP(p, k+1, j) + pi-1pkpj
5. if q < M[i,j] then M[i,j] = q
6. return M[i,j]

M[1,3] = min{(M[1,1]+M[2,3]+p0p1p3= 0+p1p2p3+p0p1p3)

 (M[1,2]+M[3,3]+p0p2p3= p0p1p2+0+p0p2p3)}
 = min {(2*5*1+4*2*1) = 18, (4*2*5+4*5*1) = 60}

1:3
1:1 2:3 3:31:2

2:2 3:3 1:1 2:2
There is redundant computation because
no intermediate results are stored.

4/29/19

4

Matrix-Chain Product – Recursive Solution
RMP(p, i, j) // p is array of dimensions, initially i = 1, j = # of matrices
1. if i = j return 0 // nothing need be done with a single matrix

2. M[i,j] = ∞
3. for k = i to j-1
4. q = RMP(p, i, k) + RMP(p, k+1, j) + pi-1pkpj
5. if q < M[i,j] then M[i,j] = q
6. return M[i,j]

Matrix-Chain-Order (p) // p is array of dimensions
 1. n = p.length – 1
 2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables
 3. for i = 1 to n
 4. M[i,i] = 0 /** fill in main diagonal of M with 0s **/
 5. for d = 2 to n /** d is chain length**/
 6. for i = 1 to n – d + 1
 7. j = i + d - 1
 8. M[i, j] = ∞
 9. for k = i to j-1
10. q = M[i, k]+ M[k+1,j] + pi-1pkpj)
11. if q < M[i, j]
12. M[i, j] = q
13. s[i, j] = k
14. return M and s

Matrix-Chain Product – Bottom-up solution

The M matrix holds the lowest
number of multiplications for
each sequence and s holds
the split point for that
sequence. Matrix s is used to
print the optimal paren-
thesization.

Matrix-Chain-Order (p) // p is array of dimensions
 1. n = p.length – 1
 2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables
 3. for i = 1 to n
 4. M[i,i] = 0 /** fill in main diagonal with 0s **/
 5. for d = 2 to n /** d is chain length**/
 6. for i = 1 to n – d + 1
 7. j = i + d - 1
 8. M[i,j] = ∞
 9. for k = i to j-1
10. q = M[i,k]+ M[k+1,j] + pi-1pkpj)
11. if q < M[i,j]
12. M[i,j] = q
13. s[i,j] = k
14. return M and s

p = [30, 35, 15, 5, 10, 20, 25]

Matrix-Chain Product – Bottom-up solution Matrix-Chain Product – Bottom-up solution
Input: s array, dimensions of M matrix
Output: side-effect printing of optimal parenthesization

Print-Optimal-Parens(s, i, j) // initially, i = 1 and j = n
 1. if i == j
 2. print “A”i

 3. else
 4. print “(”
 5. Print-Optimal-Parens(s, i, s[i, j])
 6. Print-Optimal-Parens(s, s[i, j] + 1, j)
 7. print “)”

“((A1 (A2 A3))((A4 A5) A6))”

Matrix-Chain Product – Bottom-Up Solution

Complexity: • O(n3) time because of the nested for loops with
 each of d, i, and k taking on at most n-1 values.

 • O(n2) space for two n x n matrices M and s

