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Dynamic Programming (Ch. 15) 
Dynamic programming can provide a good solution for 
problems that take exponential time to solve by brute-force 
methods. 
 
Typically applied to optimization problems, where there are 
many possible solutions, each solution has a particular value, 
and we wish to find the solution with an optimal (minimal or 
maximal) value. 
 
For many of these problems, we must consider all subsets of 
a possibly very large set, so there are 2n possible solutions -- 
too many to consider sequentially for large n. 
 

Divide-and-conquer algorithms find an optimal solution 
by partitioning a problem into independent subproblems, 
solving the subproblems recursively, and then 
combining the solutions to solve the original problem. 
 
Dynamic programming is applicable when the sub-
problems are not independent, i.e. when they share 
subsubproblems. 

Dynamic Programming 

Dynamic Programming 
Developed by Richard Bellman in the 1950s. Not a specific algorithm, 
but a technique (like divide-and-conquer).  
 
This process takes advantage of the fact that subproblems have optimal 
solutions that lead to an overall optimal solution. 
 
DP is often useful for problems with overlapping subproblems.  These 
algorithms typically solve each subproblem once, record the result in a 
table, and use the information from the table to solve larger problems. 
 
Computing the nth Fibonacci number is an example of a non-
optimization problem to which dynamic programming can be applied.   
 
       F(n) = F(n-1) + F(n-2) for n >= 2 
 

  F(0) = 0 and F(1) = 1. 

Fibonacci Numbers 
A straightforward, but inefficient algorithm to compute the nth Fibonacci 
number uses a top-down approach: 
 
     RFibonacci (n) 
    1.  if n = 0 then return 0 
    2.  else if n = 1 then return 1 
    3.  else return RFibonacci (n-1) + RFibonacci (n-2) 
 
This approach uses calls on the same number many times, leading to an 
exponential running time. 
 
  

Fibonacci Numbers 
 
A more efficient, bottom-up approach starts with 0 and works up to n, 
requiring only n values to be computed: 
 
     Fibonacci(n) 

     1. f[0] = 0 
     2. f[1] = 1 
     3. for  i = 2 … n 
     4.      f[i] = f[i-1] + f[i-2] 
     5. return f[n] 

 
The technique of storing answers to smaller subproblems is called bottom-
up programming. 
    

 Rod Cutting Problem 

Problem: Find optimal way to cut a rod of length n 

Given: rod of length n and a table of prices for rods of  
          length 1..n 
 
The table specifies that a rod of length i has a price pi 
 
Optimization problem is to find best set of cuts to get 
maximum price where 

•  Each cut is integer length  
•  Can use any number of cuts, from 0 to n – 1 
•  There is no cost for a cut  
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 Rod Cutting Problem 

Example rod lengths and values:  
 
 
 
Can cut rod in 2n-1 ways since each inch can have a cut 
or no cut. 
 
Example: rod of length 4: 
 
Best price: 
       = two 2-inch pieces  
       = p2 + p2  
       = 5 + 5 = 10 

Length i 1 2 3 4 5 6 7 8
Price pi 1 5 8 9 10 17 17 20

4 lengths
1,3 1 + 8 = 9
2,2 5 + 5 =10
3,1 8 + 1 = 9

1,1,2 1 + 1 + 5 = 7
1,2,1 1 + 5 + 1 = 7
2,1,1 5 + 1 + 1 = 7

1,1,1,1 1 + 1 + 1 + 1 = 4

 Calculating Maximum Revenue 

Compute the maximum revenue (ri) for rods of length i  
 
 
 
Let’s compute these values 
from the bottom up for i=4 
 
•  1: 0 cuts = p1 
•  2: Compare p2, p1+p1 
•  3: Compare p3, p2+p1,  
        p1+p1+p1  
•  4: Compare p4, p1+p3,  

    p3+p1, p2+p2, p1+p1+p2,  
    p1+p2+p1, p2+p1+p1,     

        p1+p1+p1+p1 

Length i 1 2 3 4 5 6 7 8
Price pi 1 5 8 9 10 17 17 20

i ri optimal solution
1 1 1 (no cuts)
2 5 2 (no cuts)
3 8 3 (no cuts)
4 10 2 + 2
5 13 2 + 3
6 17 6 (no cuts)
7 18 1 + 6 or 2 + 2 + 3
8 22 2 + 6

Cut-Rod 
     Recursive, top-down implementation: 

Cut-Rod(p,n) 
 1.   if n == 0  
 2.        return 0 
 3.   q = negative infinity 
 4    for i = 1 to n 
 5.         q = max(q, p[i] + CutRod(p, n – 1)) 
 6.   return q 

T(n) = 2n

Bottom-Up-Cut-Rod 
     Non-recursive, bottom-up implementation: 

Bottom-Up-Cut-Rod(p,n): 
1.  let r[0..n] be a new array 
2.  r[0] = 0 
3.  for j = 1 to n 
4.       q = negative infinity 
5.       for i = 1 to j 
6.            if q <  p[ i ] + r[ j – i ] 
7.                     q = p[ i ] + r[ j – i ] 
8.        r[ j ] = q 
9.   return r[n]  

T(n) = n2

r is the maximum 
revenue for each 
rod size. 

Extended Bottom-Up-Cut-Rod 
Non-recursive, bottom-up implementation that allows the 
enumeration of the max valued sequence of lengths: 

Extended-Bottom-Up-Cut-Rod(p,n): 
1.  let r[0..n] and s[0..n] be new arrays 
2.  r[0] = 0 
3.  for j = 1 to n 
4.       q = negative infinity 
5.       for i = 1 to j 
6.            if q <  p[ i ] + r[ j – i ] 
7.                     q = p[ i ] + r[ j – i ] 
8.                     s[ j ] = i 
9.        r[ j ] = q 
10.  return r[n] and s[n] 

r is the maximum 
revenue for each 
rod size. 

s is the optimal size 
of the first piece to 
cut off.

Print-Cut-Rod-Solution(p, n) 
     Takes a price table p and a rod size n and calls  
     Extended-Bottom-Up-Cut-Rod 

Print-Cut-Rod-Solution(p,n):      
1.   (r, s) = Bottom-Up-Cut-Rod(p,n) 
2.    while n > 0 
3.        print s[n] 
4.        n = n – s[n] 
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Matrix-Chain Product 
If A is an m × n matrix and B is an n × p matrix, then  
 

               A ⋅ B = C   is an m × p matrix 
 

and the time needed to compute C is O(mnp). 
 

•   there are mp elements of C 
•   each element of C requires n scalar multiplications and n-1  
   scalar additions  

Matrix-Chain Multiplication Problem: 
 
Given matrices A1, A2, A3, ..., An, where the dimension of Ai is pi-1 ×  pi, 
determine the minimum number of multiplications needed to compute 
the product A1 ⋅ A2 ⋅ ... ⋅ An.  This involves finding the optimal way to 
parenthesize the matrices. 
 
For more than 2 matrices, there exists more than one order of multi-
plication. 

Matrix-Chain Product 
The running time of a brute-force solution (exhaustively checking all ways to 
parenthesize 2 matrices) is: 
 

 T(n) = 1 if n=1, 
 

        =                                      if n ≥ 2 
 
 
Here, P(k) is the way to parenthesize first k matrices and P(n – k) is the way 
to parenthesize the rest. 
 
Hopefully, we can do better using Dynamic Programming. 

P(k)P(n− k)
k=1

n−1

∑ =Ω(2n )

Matrix-Chain Product Example 
A1 (4 × 2) A2 (2 × 5) A3 (5 × 1)

× ×

(A1 ⋅ A2) ⋅ A3 
M1 = A1 ⋅ A2:  requires 4 ⋅ 2 ⋅ 5 = 40 multiplications, M1 is 4 × 5 matrix 
M2 = M1 ⋅ A3:  requires 4 ⋅ 5 ⋅ 1 = 20 multiplications, M2 is 4 × 1 matrix 
–> total multiplications = 40 + 20 = 60 

A1 ⋅ (A2 ⋅ A3 )  
M1 = A2 ⋅ A3:  requires 2 ⋅ 5 ⋅ 1 = 10 multiplications, M1 is 2 × 1 matrix 
M2 = A1 ⋅ M1:  requires 4 ⋅ 2 ⋅ 1 = 8  multiplications, M2 is 4 × 1 matrix 
–> total multiplications = 10 + 8 = 18 

Two ways to parenthesize this product: 

p = (4, 2, 5, 1) dimension array 

The order 
of mult can  
make a 
difference 

How do we 
find the 
minimum 
over all  
possibilities? 

Matrix-Chain Product 
The optimal substructure of this problem can be given with the 
following argument: 
 

Suppose an optimal way to parenthesize Ai Ai+1…Aj splits the product 
between Ak and Ak+1.  Then the way the prefix subchain Ai Ai+1…Ak is 
parenthesized must be optimal.  Why?  
 
If there were a less costly way to parenthesize Ai Ai+1…Ak, substituting 
that solution as the way to parenthesize Ai Ai+1…Aj gives a solution with 
lower cost, contradicting the assumption that the way the original group 
of matrices was parenthesized was optimal.   
 
Therefore, the structure of the subproblems must be optimal. 

Matrix-Chain Product – Recursive Solution 
A3 (5 × 1)A1 (4 × 2) A2 (2 × 5)

× ×

p = (4, 2, 5, 1) 

Let M[i,j] = min number of mults to 
compute Ai ⋅ Ai+1⋅ ... ⋅ Aj, where 
dimension of Ai ⋅ Ai+1⋅ ... ⋅ Aj is pi-1 × pj  
M[i,i] = 0 for i = 1 to n, and 
M[1,n] is the solution we want.  
 

p is numbered from 0 to n and pi is p[i]. 

M[i,j] can be determined as follows: 
 

 M[i,j] = min(M[i,k] + M[k+1, j] + pi-1 pk pj), where i ≤ k < j, 
 
where M[i,j] equals the minimum cost for computing subproducts Ai…kAk+1…j 
plus the cost of multiplying these two matrices together.  Each matrix Ai is 
dimension pi-1 x pi, so computing matrix product Ai…kAk+1…j takes pi-1 pk pj 
scalar multiplications. 

Matrix-Chain Product – Recursive Solution 

A3 (5 × 1)A1 (4 × 2) A2 (2 × 5)

× ×

p = (4, 2, 5, 1) 

RMP(p, i, j)           // p is array of dimensions, initially i = 1, j = # of matrices 
1. if i = j  return 0 // nothing need be done with a single matrix 

2. M[i,j] = ∞ 
3. for k = i to j-1 
4.      q = RMP(p, i, k) + RMP(p, k+1, j) + pi-1pkpj 
5.      if q < M[i,j] then M[i,j] = q 
6. return M[i,j]  

M[1,3]  = min{(M[1,1]+M[2,3]+p0p1p3= 0+p1p2p3+p0p1p3) 

             (M[1,2]+M[3,3]+p0p2p3= p0p1p2+0+p0p2p3)} 
            = min {(2*5*1+4*2*1) = 18, (4*2*5+4*5*1) = 60}                                     

1:3
1:1 2:3 3:31:2

2:2 3:3 1:1 2:2
There is redundant computation because 
no intermediate results are stored. 
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Matrix-Chain Product – Recursive Solution 
RMP(p, i, j)           // p is array of dimensions, initially i = 1, j = # of matrices 
1. if i = j  return 0 // nothing need be done with a single matrix 

2. M[i,j] = ∞ 
3. for k = i to j-1 
4.      q = RMP(p, i, k) + RMP(p, k+1, j) + pi-1pkpj 
5.      if q < M[i,j] then M[i,j] = q 
6. return M[i,j]  

Matrix-Chain-Order (p)  // p is array of dimensions 
  1. n = p.length – 1 
  2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables   
  3. for i = 1 to n 
  4.       M[i,i] = 0                     /** fill in main diagonal of M with 0s **/ 
  5. for d = 2 to n                     /** d is chain length**/                  
  6.       for i = 1 to n – d + 1  
  7.             j = i + d - 1            
  8.             M[ i, j ] = ∞ 
  9.             for k = i to j-1 
10.                   q = M[ i, k]+ M[k+1,j] + pi-1pkpj) 
11.                    if q < M[ i, j ]  
12.                               M[ i, j ] = q 
13.                               s[ i, j ] = k   
14. return M and s 

Matrix-Chain Product – Bottom-up solution 

The M matrix holds the lowest 
number of multiplications for 
each sequence and s holds 
the split point for that 
sequence.  Matrix s is used to 
print the optimal paren-
thesization. 

Matrix-Chain-Order (p)  // p is array of dimensions 
  1. n = p.length – 1 
  2. let M[1…n, 1…n] and s[1…n-1,2…n] be new tables   
  3. for i = 1 to n 
  4.       M[i,i] = 0                     /** fill in main diagonal with 0s **/ 
  5.  for d = 2 to n                    /** d is chain length**/                  
  6.       for i = 1 to n – d + 1  
  7.             j = i + d - 1            
  8.             M[i,j] = ∞ 
  9.             for k = i to j-1 
10.                   q = M[i,k]+ M[k+1,j] + pi-1pkpj) 
11.                    if q < M[i,j]  
12.                               M[i,j] = q 
13.                               s[i,j] = k   
14. return M and s 

p = [30, 35, 15, 5, 10, 20, 25] 

Matrix-Chain Product – Bottom-up solution Matrix-Chain Product – Bottom-up solution 
Input:   s array, dimensions of M matrix 
Output: side-effect printing of optimal parenthesization 
 
Print-Optimal-Parens(s, i, j)  // initially, i = 1 and j = n 
  1. if i == j  
  2.      print “A”i 

  3. else 
  4.      print “(” 
  5.      Print-Optimal-Parens(s, i, s[i, j]) 
  6.      Print-Optimal-Parens(s, s[i, j] + 1, j) 
  7.      print “)” 

“((A1 (A2 A3))((A4 A5) A6))” 

Matrix-Chain Product – Bottom-Up Solution 

Complexity:   •  O(n3) time because of the nested for loops with 
                           each of  d, i, and k taking on at most n-1 values. 
 

           •  O(n2) space for two n x n matrices M and s 


