Comparing Time Complexity

Given 2 algorithms, which is faster?

Method 1: factor out common terms

n2 and n3: factor out n? on both sides to get n2 € O(n3)

Method 2: take the log of both sides

2"andn? => Ig2n=n and Ign?=2ign Ign& O(n), so
it must be that n2 € O(2")

Method 3: Try substituting very large value of n

n32 and nign Factor out n on both sides and we get n'2 and Ign
Take Ig of both sides and we get Ign'’2 = '4(Ign) and Igign

Substitute 21924 for n and we get

(4 *1024) = 512 and Iglg2'02* = 131024 = 10

So, as n gets very large, nign € O(n%2)

b)
c)
d)
e)

f)

Handy Asymptotic Facts

If T(n) is a polynomial function of degree k, then T(n) = O(nk).
Iogkn = (|Og n)k = O(n) Any poly-log func of n grows more slowly than any linear func of n.
nb = o(a") for any constants a > 1, b > 0 polys grow more slowly than expos
n!= o(n") 1#2%3% _*n < n*n*. *n

n!=m(2") 1#2#3% #n > 2%2% .2 (n times)

Ig(n!) = B(nlgn)

Given an expression like O(n + m), the actual time is the larger of n and m.

2/6/19



