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Graph Algorithms - Outline of Topics
•  Elementary Graph Algorithms - Chapter 22

-  graph representation
-  breadth-first-search, depth-first-search, topological 

sort 

•  Minimum Spanning Trees - Chapter 23
-  Kruskal's and Prim's algorithms (greedy 

algorithms) 
 

•  Single-Source Shortest Paths - Chapter 24
-  Dijkstra's algorithm (greedy algorithm)

Undirected Graphs
An undirected graph G = (V, E) consists of

•  A set V  = |V| of nodes (vertices) , and
•  A set E = |E| of undirected edges represented by node 

pairs 
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d 
f 

e 
g h 

In this graph,
both (b,c) and 
(c,b) are edges.
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weighted graph: each edge has a number, called a weight 
attached to it.  The weight is usually a positive number and 
may represent distance, cost, etc.  
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Graph Terminology
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 sparse graph: |E| is o(|V|2).   

dense graph: |E| is Θ(|V|2).   

Graph Terminology
A directed graph (digraph) G = (V, E) consists of

•  A set V of nodes (vertices) , and
•  A set E of unidirectional edges (represented by 

arrows)
•  Self-loops are possible (as shown on node f)
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Note:  In this graph, (b,c) is an edge, but (c,b) is not an edge.
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Adjacency List Graph Representation

a b c 

d e 
f 

Adjacency list:  An array A[1, |V|] of lists, one for each node 
v ∈ V (vertex set).  Each node v's list contains pointers to all 
nodes adjacent to v in G.  Each edge repeated twice.
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Complexity issues
· advantage - storage is O(V + E)

(good for sparse graphs)
· drawback - list traversal to find edge

Representing Undirected Graphs with 
Adjacency Matrices

a b c 
d e 

g 

Adjacency matrix:  An array A[V, V] such that
A[i,j] = 1 if (i,j) ∈ E and

 0 otherwise

f 

0 1 0 1 0 0 0 
1 0 1 0 0 0 0 
0 1 0  0 1 0 0 
1 0 0 0 1 0 1 
0 0 1 1 0 0 1 
0 0 0 0 0 0 1 
0 0 0 1 1 1 0 

a 
b 
c 
d 
e 
f 
g 

a   b  c  d  e  f  g 

Complexity issues
·  advantage - O(1) time to check for edge
·  drawback - storage is O(V2) (practical 

only for dense graphs)
In undirected graph, only the entries above the upper left to lower right 
diagonal need to be stored.
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Representing Digraphs with 
Adjacency Lists

a b c 

d e 
f 
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a 

b e 

a 

Complexity issues
· advantage - storage is O(V + E)
  Good for sparse graphs, and most 
  graphs we will use are sparse 
· drawback - list traversal to find edge

Only store outgoing edges in adj. lists

The degree of a node in an undirected graph is the number of 
edges incident on it.

a b c 

d 
f 

e 
g h 

The in-degree of a node in a digraph is the number of edges 
entering it and its out-degree is the number of edges leaving it.

If (u,v) is an edge, then it is incident on both u and v and we 
say vertex v is adjacent to vertex u.  The same terms hold for 
undirected graphs. Adjacent vertices are
called neighbors
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A path of length k from a node u to a node u' is a sequence 
(v0, v1, ..., vk) of nodes such that u = v0, u' = vk and there is an 
edge between each vi, i = 0,1,2,...,k.   In a digraph, a path 
exists between nodes a and b only if there is a sequence of 
outgoing edges from a to b

If there is a path p between vertices u and v, we say v is 
reachable from u via p.   

a b c 

d 
f 

e 
g h 

A simple path has all 
distinct vertices.

The red edges in this 
graph trace a simple 
path between each pair 
of nodes.

An undirected graph is connected if there is a simple path 
between every pair of nodes.  A graph may have several 
connected components that are disjoint subsets of nodes. 
 

A completely connected graph is an undirected graph in 
which every pair of nodes is adjacent. 
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In a digraph, a path (v0, v1, ..., vk) forms a cycle if  v0 = vk 
and the path contains at least one edge 
 

The cycle is simple if, in addition, v1, v2, ..., vk are distinct. 
 

A digraph with no cycles is called a directed acyclic graph, 
abbreviated DAG  
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g h 

Not a DAG



Breadth-First Search 
Breadth-First Search finds the shortest-path distance 
(number of edges) between a source node and every other 
node in G.

Called breadth-first because it discovers all vertices at 
distance k from a source node s before it discovers any 
vertices at distance k+1 from s, spanning the breadth before 
the depth of G.

BFS finds all vertices v that are reachable from s by building 
a breadth-first tree, where the path in the tree from s to v 
has the fewest number of edges of all paths from s to v.
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Breadth-First Search 
Breadth-First Search has time complexity of O(V + E) and 
is often used as a building block of other algorithms.

BFS is particularly useful in finding shortest paths on un-
weighted graphs.

BFS starts at a node s in a graph and explores all its 
neighbor nodes before moving to the next level (neighbors 
of neighbors). 

Explores nodes in "layers".

Maintains a queue of nodes to keep track of which node it 
should visit next.

Breadth-First Search Implementation
The algorithm from our book maintains a FIFO queue, Q, to 
manage the set of nodes and starts by enqueuing s, the 
source node

BFS algorithm maintains the following information for each 
vertex u:

- u.c: white, gray, or black to indicate status
white =  not discovered yet; initially, all

                                    nodes except s are undiscovered.
gray    = discovered, but not finished;  

                                    initially only s.
black =  finished; initially none are finished.

- u.d  : distance from s to u; initially ∞ for all but s.d=0
- u.π : predecessor of u in BF tree; initially NIL for all 

                     (s.π  = NIL and remains NIL)
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BFS node
 

Each node has fields for predecessor (π), distance from source,  
and color.  Each node also has an associated adjacency list with 
pointers to neighboring nodes. 
 
 

 

d
π

NAME
c

Adjacency
List

Breadth-First Search
Q.enqueue(s) adds s 
to the rear of Q

Q.dequeue() removes
and returns the item 
at the head of Q

Note:  If G is not 
connected, then 
BFS will not visit the
entire graph (without
some extra provisions
in the algorithm)

BFS (G, s):  
 0. s.c = gray; s.π = NIL  
 1. Q.enqueue (s) // Q is a FIFO ds 

 2. while Q ≠ ∅ 
 3.      u = Q.dequeue() 
 4.      for each v adjacent to u 
 5.           if v.c == white 
 6.    v.c = gray 
 7.               v.d = u.d + 1 
 8.               v.π = u 
 9.               Q.enqueue(v)      
10.     u.c = black 
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Breadth-First Search

-  each node enqueued 
and dequeued once = 
O(V) time 

-  each edge considered 
once (in each 
direction on 
undirected G) =  
O(E) time 

•  total = O(V + E) 
        = O(V2) (w-c) 

Complexity  
(Adjacency List)

BFS (G, s):  
 0. s.c = gray; s.π = NIL  
 1. Q.enqueue (s) // Q is a FIFO ds 

 2. while Q ≠ ∅ 
 3.      u = Q.dequeue() 
 4.      for each v adjacent to u 
 5.           if v.c == white 
 6.    v.c = gray 
 7.               v.d = u.d + 1 
 8.               v.π = u 
 9.               Q.enqueue(v)      
10.     u.c = black 

Analysis of Breadth-First Search

The ultimate goal of the proof of correctness is to show that 
v.d = δ(s,v) when the algorithm is done and that a path is 
found from s to all reachable vertices. 

L. 22.1 : children of a node u are given a higher d value than u.
L. 22.2 : for every edge (u,v), the shortest path from s to v can 

be no longer than the (shortest path from s to u) + 1.
L. 22.3 : at any time, Q holds at most 2 distinct d values. I.e., the 

range of values in Q is at most 2. Why?
C. 22.4: the d values are monotonically increasing over time as 

the algorithm runs.

Shortest-path distance δ(s,v) :  minimum number of edges 
in any path from vertex s to v.  If no path exists from s to v, 
then δ(s,v) = ∞.
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Theorem 22.5: (Correctness of BFS)
Let G = (V, E) be a directed or undirected graph, and suppose that BFS is 
run from a given source vertex s ∈ V.  Then, during execution, BFS 
discovers every vertex v ≠ s that is reachable from the source s, and upon 
termination, v.d = δ(s,v) for every reachable or unreachable vertex v.

Proof by contradiction.  

Assume that for some vertex v that v.d ≠ δ(s,v) after running BFS.  Also, 
assume that v is the vertex with minimum δ(s,v) that receives an incorrect d 
value. By Lemma 22.2, it must be that v.d > δ(s,v).  
Case 1:  v is not reachable from s. This is a contradiction to the assumption 
that v is reachable, and the Thm holds.  
Case 2:  v is reachable from s.  Let u be the vertex immediately preceding v 
on a shortest path from s to v, so that δ(s,v) = δ(s,u) + 1.  Because 
δ(s,u) < δ(s,v) and because v is the vertex with the minimum δ(s,v) that 
receives an incorrect d value, u.d = δ(s,u).  

So we have v.d > δ(s,v) = δ(s,u) + 1 = u.d + 1.

Consider the time t when u is dequeued.  At time t, v is either white, gray, 
or black.  We can derive a contradiction in each of these cases.

Case 1:  v is white.  Then in line 12, v.d = u.d+1.

Case 2:  v is black.  Then v was already dequeued, and therefore 
              v.d ≤ u.d (by L. 22.3).

Case 3:  v is gray.  Then v turned gray when it was visited from some 
vertex w, which was dequeued before u.  Then v.d = w.d + 1.  Since 
w.d ≤ u.d (by L. 22.3), v.d ≤ u.d + 1. 

Each of these cases is a contradiction to v.d > δ(s,v), so we conclude that 
v.d = δ(s,v).                                                                                   n
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Breadth-First Trees
BFS builds a breadth-first tree that can be identified by using 
the π values at each node.

The edges defined by each v.π are called tree edges.

Print-Path (G, s, v) // finds the tree edges between s and v,  
 1. if v == s             // starting at v
 2.       print s 
 3. else 
 4.       if v.π == NIL 
 5.           print "no path from " s " to " v " exists"
 6.       else       
 7.              Print-Path(G, s, v.π)
 8.              print v
 

Breadth-First Search v2
BFS (G, s):  
 0. let marked be a boolean array of size |V| // init all false 
 1. let edgeTo be an array of |V| integers          
 2. Q.enqueue (s)                  
 3. marked[s] = true  
 4. while Q ≠ ∅ 
 5.      u = Q.dequeue() 
 6.      for each v adjacent to u 
 7.           if marked[v] == false 
 8.    edgeTo[v] = u 
 9.              marked[v] = true 
10.             Q.enqueue(v)      
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Enumerating shortest path, sàv
pathTo(v):  
 1. if (!marked[v]) return false 
 2. Stack<Integer> path = new Stack<Integer>()  
 3. for (int x = v; x != s; x = edgeTo[x]) 
 4.      path.push(x)   
 5. path.push(s) 
 6. return path      
 

 

When pathTo finishes, the path will contain the path from s to 
v and they can be popped off the stack in order. 

Analysis of Breadth-First Search
Proposition A1: For any vertex v reachable from s, BFS 
computes a shortest path from s to v such that no path 
from s to v has fewer edges. 

Informal proof:
It is easy to prove by induction that Q always consists of zero 
or more vertices of distance k from s, followed by zero or 
more vertices of distance k+1 from s, for some integer k , 
starting with k = 0. This property implies, in particular, that 
vertices enter and leave Q in order of their increasing 
distance from s.  When a vertex v enters Q, no shorter path to 
v will be found before v comes off Q, and no path to v that is 
discovered after v comes off Q can be shorter than the path 
length s to v.
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Analysis of Breadth-First Search
Proposition A2: BFS takes time proportional to V + E in 
the worst case.

Informal proof:
BFS marks all the vertices connected to s in time proportional 
to the degree of s.  If the graph is connected, this sum equals 
the sum of the degrees of all the vertices, or 2E.

Initializing the marked[ ] and edgeTo[ ] arrays takes time 
proportional to V.

Example BFS Traversal

G

EA

J I

H

B

FC

D

Order of visiting:       a1  c2   d3  e4   f5   b6   g7   h8   i9   j10 

Distance of vertex  :  0    1    1    1   2    2    ∞    ∞   ∞  ∞   
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Breadth-first Search Forest
G

E

A

J

I

H

B

F

C D

Tree edges are solid lines and dashed lines are cross
edges.

Bipartite Graphs
A graph is bipartite if all its vertices can be 
partitioned into two disjoint subsets X and Y so 
that every edge connects a vertex in X with a 
vertex in Y, i.e., if its vertices can be colored in 
2 colors so that every edge has its end points 
colored in different colors.

EA

BF

C

D
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Bipartite Graphs
Explain how BFS could be used to detect 
a bipartite graph.

EA

BF

C

D

EA

B

F

CD

Mark the source, A, 
with color1, mark the 
nodes at level 1 with 
color2, and so on. 
Every node on an 
even numbered level 
will be color1 and on 
every odd level color2 

Bipartite Graphs

Is this graph bipartite?  

No.  The edge (B,C) would have to 
connect nodes of the same color

C

A B

D
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Applications of BFS
Based upon the BFS, there are O(V + E)-time 
algorithms for the following problems:
•  Testing whether graph is connected.
•  Computing a spanning forest of graph.
•  Computing, for every vertex in graph, a path with the 

minimum number of edges between start vertex and 
current vertex or reporting that no such path exists.

•  Computing a cycle in graph or reporting that no such 
cycle exists.


