Graph Algorithms - Outline of Topics

* Elementary Graph Algorithms - Chapter 22
- graph representation
- breadth-first-search, depth-first-search, topological
sort

* Minimum Spanning Trees - Chapter 23
- Kruskal's and Prim's algorithms (greedy
algorithms)

» Single-Source Shortest Paths - Chapter 24
- Dijkstra's algorithm (greedy algorithm)

Undirected Graphs

An undirected graph G = (V, E) consists of
+ Aset V =1VI of nodes (vertices) , and
» Aset E = IEl of undirected edges represented by node
pairs

In this graph,
both (b,c) and

(c,b) are edges.

4/2/19

Graph Terminology

sparse graph: |E| is o(|V|?).
dense graph: [E| is ©(]|V]?).

weighted graph: each edge has a number, called a weight
attached to it. The weight is usually a positive number and
may represent distance, cost, etc.

Graph Terminology

A directed graph (digraph) G = (V, E) consists of
e Aset Vof nodes (vertices) , and
* Aset E of unidirectional edges (represented by
arrows)
» Self-loops are possible (as shown on node f)

f——g)

Note: In this graph, (b,c) is an edge, but (c,b) is not an edge.

4/2/19

Adjacency List Graph Representation

Adjacency list: An array A[1, IVI] of lists, one for each node
v € V (vertex set). Each node Vv's list contains pointers to all

nodes adjacent to v in G. Each edge repeated twice.

a ——
a @ c b —
c —>
) d
Complexity issues e
- advantage - storage is O(V + E)
(good for sparse graphs) f

- drawback - list traversal to find edge

b d
a c
b e
a f
c f
e d

Representing Undirected Graphs with
Adjacency Matrices

Adjacency matrix: An array A[V, V] such that

Afi,j] = 1f (i,j) € E and

0 otherwise

Complexity issues

advantage - O(1) time to check for edge
drawback - storage is O(V?) (practical

a
b
d
@ e
f
g

a bcdefg
010110010
1/0/1]|0]|0|0]|0O
01001 010
1/0/0|0]|1 0|1
0|01 /10|01
0/0j0|0|0]|0 |1
o0/0j01 11110

only for dense graphs)

In undirected graph, only the entries above the upper left to lower right

diagonal need to be stored.

4/2/19

Representing Digraphs with
Adjacency Lists

a)¢ @‘ c
a
()

b — a
- c —>| b e
Complexity issues
- advantage - storage is O(V + E) d —/ a
Good for sparse graphs, and most
graphs we will use are sparse e
- drawback - list traversal to find edge
f —| e d

Only store outgoing edges in adj. lists

If (u,v) is an edge, then it is incident on both u and v and we
say vertex v is adjacent to vertex u. The same terms hold for
undirected graphs. Adjacent vertices are

called neighbors

The degree of a node in an undirected graph is the number of
edges incident on it.

The in-degree of a node in a digraph is the number of edges
entering it and its out-degree is the number of edges leaving it.

4/2/19

A path of length k from a node u to a node u' is a sequence
(Vg V4, -, V) Of nodes such that u = v, u' = v, and there is an
edge between each v, i=0,1,2,...k. Inadigraph, a path
exists between nodes a and b only if there is a sequence of
outgoing edges from ato b

If there is a path p between vertices u and v, we say v is

reachable from u via p.
A simple path has all
distinct vertices.

The red edges in this
graph trace a simple
path between each pair
of nodes.

An undirected graph is connected if there is a simple path
between every pair of nodes. A graph may have several
connected components that are disjoint subsets of nodes.

A completely connected graph is an undirected graph in
which every pair of nodes is adjacent.

4/2/19

In a digraph, a path (v, vy, ..., v,) forms a cycle if v, = v,
and the path contains at least one edge

The cycle is simple if, in addition, vy, v,, ..., v, are distinct.

A digraph with no cycles is called a directed acyclic graph,
abbreviated DAG

Not a DAG

Breadth-First Search

Breadth-First Search finds the shortest-path distance
(number of edges) between a source node and every other
node in G.

Called breadth-first because it discovers all vertices at
distance k from a source node s before it discovers any
vertices at distance k+1 from s, spanning the breadth before
the depth of G.

BFS finds all vertices v that are reachable from s by building
a breadth-first tree, where the path in the tree fromsto v
has the fewest number of edges of all paths from s to v.

4/2/19

Breadth-First Search

Breadth-First Search has time complexity of O(V + E) and
is often used as a building block of other algorithms.

BFS is particularly useful in finding shortest paths on un-
weighted graphs.

BFS starts at a node s in a graph and explores all its
neighbor nodes before moving to the next level (neighbors
of neighbors).

Explores nodes in "layers".

Maintains a queue of nodes to keep track of which node it
should visit next.

Breadth-First Search Implementation

The algorithm from our book maintains a FIFO queue, Q, to
manage the set of nodes and starts by enqueuing s, the
source node

BFS algorithm maintains the following information for each
vertex u:
- u.c: white, gray, or black to indicate status
white = not discovered yet; initially, all
nodes except s are undiscovered.
gray = discovered, but not finished;
initially only s.
black = finished; initially none are finished.
- u.d : distance from s to u; initially oo for all but s.d=0
- u.tt: predecessor of u in BF tree; initially NIL for all
(s.t = NIL and remains NIL)

4/2/19

BFS node

Each node has fields for predecessor (1), distance from source,
and color. Each node also has an associated adjacency list with

pointers to neighboring nodes.

d NAME

Adjacency
List

|

Breadth-First Search

BFS (G, s):

0. s.c = gray; s.t = NIL

1. Q.enqueue (s) // Qis a FIFO ds
2. whileQ # &

3 u = Q.dequeue()

4 for each v adjacent to u
5 if v.c == white

6. V.C = gray

7 vd=ud+1

8 V.t = U

9 Q.enqueue(v)

10. u.c = black

Q.enqueue(s) adds s
to the rear of Q

Q.dequeue() removes
and returns the item
at the head of Q

Note: If G is not
connected, then

BFS will not visit the
entire graph (without
some extra provisions
in the algorithm)

4/2/19

Breadth-First Search

BFS (G, s): Complexity

0. s.c = gray; s.t = NIL (Adjacency List)

1. Q.epqueue (s) // QisaFIFO ds - each node enqueued

2. while Q # © and dequeued once =
3 u = Q.dequeue() O(V) time

4 for each v adjacent to u

5 if v.c == white - each edge considered
6. V.C = gray once (in each

7 vd=ud+1 direction on

8 V.t = U undirected G) =

9 Q.enqueue(v) O(E) time

10. u.c = black - total = O(V + E)

= 0(V?) (w-c)

Analysis of Breadth-First Search

Shortest-path distance §(s,v) : minimum number of edges
in any path from vertex s to v. If no path exists from s to v,

then §(s,v) = 0.

The ultimate goal of the proof of correctness is to show that
v.d = §(s,v) when the algorithm is done and that a path is
found from s to all reachable vertices.

L. 22.1 : children of a node u are given a higher d value than u.

L. 22.2 : for every edge (u,v), the shortest path from s to v can
be no longer than the (shortest path from s to u) + 1.

L. 22.3 : at any time, Q holds at most 2 distinct d values. l.e., the
range of values in Q is at most 2. Why?

C. 22.4: the d values are monotonically increasing over time as
the algorithm runs.

4/2/19

Theorem 22.5: (Correctness of BFS)

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is
run from a given source vertex s € V. Then, during execution, BFS
discovers every vertex v # s that is reachable from the source s, and upon
termination, v.d = 8(s,v) for every reachable or unreachable vertex v.

Proof by contradiction.

Assume that for some vertex v that v.d = §(s,v) after running BFS. Also,
assume that v is the vertex with minimum &(s,v) that receives an incorrect d
value. By Lemma 22.2, it must be that v.d > d(s,v).

Case 1: vis not reachable from s. This is a contradiction to the assumption
that v is reachable, and the Thm holds.

Case 2: v is reachable from s. Let u be the vertex immediately preceding v

on a shortest path from s to v, so that §(s,v) = 8(s,u) + 1. Because
O(s,u) < O(s,v) and because v is the vertex with the minimum §(s,v) that
receives an incorrect d value, u.d = O(s,u).

So we have v.d > §(s,v) =d(s,u) + 1 =u.d + 1.

Consider the time t when u is dequeued. At time t, v is either white, gray,
or black. We can derive a contradiction in each of these cases.

Case 1: vis white. Theninline 12, v.d = u.d+1.

Case 2: vis black. Then v was already dequeued, and therefore
v.d <u.d (by L. 22.3).

Case 3: vis gray. Then v turned gray when it was visited from some
vertex w, which was dequeued before u. Then v.d =w.d + 1. Since
w.d =u.d (by L. 22.3), vd <su.d + 1.

Each of these cases is a contradiction to v.d > §(s,v), so we conclude that
v.d = 8(s,v). |

4/2/19

10

Breadth-First Trees

BFS builds a breadth-first tree that can be identified by using
the mtvalues at each node.

The edges defined by each v.Tt are called tree edges.

Print-Path (G, s, v) // finds the tree edges between s and v,
1.ifv==s // starting at v

2. print s

3. else

4. if v.i== NIL

5. print "no path from"s"to " v " exists"
6. else

7. Print-Path(G, s, v.r)

8. print v

Breadth-First Search v2

BFS (G, s):

0. let marked be a boolean array of size |V| // init all false
1. let edgeTo be an array of |V| integers
2. Q.enqueue (s)

3. marked[s] = true

4. whileQ # U

5 u = Q.dequeue()

6 for each v adjacent to u

7. if marked[v] == false

8 edgeTo[v] = u

9. marked[v] = true

10. Q.enqueue(v)

4/2/19

11

Enumerating shortest path, s>v

pathTo(v):

1. if (!marked[v]) return false

2. Stack<Integer> path = new Stack<Integer>()
3. for (int x = v; x I='s; x = edgeTo[x])

4. path.push(x)

5. path.push(s)

6. return path

When pathTo finishes, the path will contain the path from s to
v and they can be popped off the stack in order.

Analysis of Breadth-First Search

Proposition A1: For any vertex v reachable from s, BFS
computes a shortest path from s to v such that no path
from s to v has fewer edges.

Informal proof:

It is easy to prove by induction that Q always consists of zero
or more vertices of distance k from s, followed by zero or
more vertices of distance k+1 from s, for some integer k ,
starting with k = 0. This property implies, in particular, that
vertices enter and leave Q in order of their increasing
distance from s. When a vertex v enters Q, no shorter path to
v will be found before v comes off Q, and no path to v that is
discovered after v comes off Q can be shorter than the path
length s to v.

4/2/19

12

Analysis of Breadth-First Search

Proposition A2: BFS takes time proportional to V + E in
the worst case.

Informal proof:

BFS marks all the vertices connected to s in time proportional
to the degree of s. If the graph is connected, this sum equals
the sum of the degrees of all the vertices, or 2E.

Initializing the marked[] and edgeTo[] arrays takes time
proportional to V.

Example BFS Traversal

)

Order of visiting: a; ¢, d; e, f5 by g; hg iy jj
Distanceof vertex : 0 1 1 1 2 2 o© o0 o @

4/2/19

13

Breadth-first Search Forest

Tree edges are solid lines and dashed lines are cross
edges.

Bipartite Graphs

A graph is bipartite if all its vertices can be
partitioned into two disjoint subsets X and Y so
that every edge connects a vertex in X with a
vertex in Y, i.e., if its vertices can be colored in
2 colors so that every edge has its end points
colored in different colors.

A ij E
D \E) B

4/2/19

14

Bipartite Graphs

Explain how BFS could be used to detect
a bipartite graph.

Mark the source, A,
with color1, mark the
nodes at level 1 with
color2, and so on.

Every node on an
even numbered level
will be color1 and on
every odd level color2

Bipartite Graphs

Is this graph bipartite?

4/2/19

15

Applications of BFS

Based upon the BFS, there are O(V + E)-time
algorithms for the following problems:

Testing whether graph is connected.
Computing a spanning forest of graph.

Computing, for every vertex in graph, a path with the
minimum number of edges between start vertex and
current vertex or reporting that no such path exists.

Computing a cycle in graph or reporting that no such
cycle exists.

4/2/19

16

