
4/2/19

1

Graph Algorithms - Outline of Topics
•  Elementary Graph Algorithms - Chapter 22

-  graph representation
-  breadth-first-search, depth-first-search, topological

sort 

•  Minimum Spanning Trees - Chapter 23
-  Kruskal's and Prim's algorithms (greedy

algorithms) 

•  Single-Source Shortest Paths - Chapter 24
-  Dijkstra's algorithm (greedy algorithm)

Undirected Graphs
An undirected graph G = (V, E) consists of

•  A set V = |V| of nodes (vertices) , and
•  A set E = |E| of undirected edges represented by node

pairs

a b c

d
f

e
g h

In this graph,
both (b,c) and
(c,b) are edges.

4/2/19

2

weighted graph: each edge has a number, called a weight
attached to it. The weight is usually a positive number and
may represent distance, cost, etc.

a b c

d
f

e
g h

Graph Terminology

5

4 3

6

3

1 2
2

4

2 1
7

 sparse graph: |E| is o(|V|2).

dense graph: |E| is Θ(|V|2).

Graph Terminology
A directed graph (digraph) G = (V, E) consists of

•  A set V of nodes (vertices) , and
•  A set E of unidirectional edges (represented by

arrows)
•  Self-loops are possible (as shown on node f)

a b c

d
f

e
g h

Note: In this graph, (b,c) is an edge, but (c,b) is not an edge.

4/2/19

3

Adjacency List Graph Representation

a b c

d e
f

Adjacency list: An array A[1, |V|] of lists, one for each node
v ∈ V (vertex set). Each node v's list contains pointers to all
nodes adjacent to v in G. Each edge repeated twice.

a

b

c

d

e

f e d

c f

a f

b e

a c

b d

Complexity issues
· advantage - storage is O(V + E)

(good for sparse graphs)
· drawback - list traversal to find edge

Representing Undirected Graphs with
Adjacency Matrices

a b c
d e

g

Adjacency matrix: An array A[V, V] such that
A[i,j] = 1 if (i,j) ∈ E and

 0 otherwise

f

0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 0 1 0 0
1 0 0 0 1 0 1
0 0 1 1 0 0 1
0 0 0 0 0 0 1
0 0 0 1 1 1 0

a
b
c
d
e
f
g

a b c d e f g

Complexity issues
· advantage - O(1) time to check for edge
· drawback - storage is O(V2) (practical

only for dense graphs)
In undirected graph, only the entries above the upper left to lower right
diagonal need to be stored.

4/2/19

4

Representing Digraphs with
Adjacency Lists

a b c

d e
f

a

b

c

d

e

f e d

a

b e

a

Complexity issues
· advantage - storage is O(V + E)
 Good for sparse graphs, and most
 graphs we will use are sparse
· drawback - list traversal to find edge

Only store outgoing edges in adj. lists

The degree of a node in an undirected graph is the number of
edges incident on it.

a b c

d
f

e
g h

The in-degree of a node in a digraph is the number of edges
entering it and its out-degree is the number of edges leaving it.

If (u,v) is an edge, then it is incident on both u and v and we
say vertex v is adjacent to vertex u. The same terms hold for
undirected graphs. Adjacent vertices are
called neighbors

4/2/19

5

A path of length k from a node u to a node u' is a sequence
(v0, v1, ..., vk) of nodes such that u = v0, u' = vk and there is an
edge between each vi, i = 0,1,2,...,k. In a digraph, a path
exists between nodes a and b only if there is a sequence of
outgoing edges from a to b

If there is a path p between vertices u and v, we say v is
reachable from u via p.

a b c

d
f

e
g h

A simple path has all
distinct vertices.

The red edges in this
graph trace a simple
path between each pair
of nodes.

An undirected graph is connected if there is a simple path
between every pair of nodes. A graph may have several
connected components that are disjoint subsets of nodes.

A completely connected graph is an undirected graph in
which every pair of nodes is adjacent.

4/2/19

6

In a digraph, a path (v0, v1, ..., vk) forms a cycle if v0 = vk
and the path contains at least one edge

The cycle is simple if, in addition, v1, v2, ..., vk are distinct.

A digraph with no cycles is called a directed acyclic graph,
abbreviated DAG

a b c

d
f

e
g h

Not a DAG

Breadth-First Search
Breadth-First Search finds the shortest-path distance
(number of edges) between a source node and every other
node in G.

Called breadth-first because it discovers all vertices at
distance k from a source node s before it discovers any
vertices at distance k+1 from s, spanning the breadth before
the depth of G.

BFS finds all vertices v that are reachable from s by building
a breadth-first tree, where the path in the tree from s to v
has the fewest number of edges of all paths from s to v.

4/2/19

7

Breadth-First Search
Breadth-First Search has time complexity of O(V + E) and
is often used as a building block of other algorithms.

BFS is particularly useful in finding shortest paths on un-
weighted graphs.

BFS starts at a node s in a graph and explores all its
neighbor nodes before moving to the next level (neighbors
of neighbors).

Explores nodes in "layers".

Maintains a queue of nodes to keep track of which node it
should visit next.

Breadth-First Search Implementation
The algorithm from our book maintains a FIFO queue, Q, to
manage the set of nodes and starts by enqueuing s, the
source node

BFS algorithm maintains the following information for each
vertex u:

- u.c: white, gray, or black to indicate status
white = not discovered yet; initially, all

 nodes except s are undiscovered.
gray = discovered, but not finished;

 initially only s.
black = finished; initially none are finished.

- u.d : distance from s to u; initially ∞ for all but s.d=0
- u.π : predecessor of u in BF tree; initially NIL for all

 (s.π = NIL and remains NIL)

4/2/19

8

BFS node

Each node has fields for predecessor (π), distance from source,
and color. Each node also has an associated adjacency list with
pointers to neighboring nodes.

d
π

NAME
c

Adjacency
List

Breadth-First Search
Q.enqueue(s) adds s
to the rear of Q

Q.dequeue() removes
and returns the item
at the head of Q

Note: If G is not
connected, then
BFS will not visit the
entire graph (without
some extra provisions
in the algorithm)

BFS (G, s):
 0. s.c = gray; s.π = NIL
 1. Q.enqueue (s) // Q is a FIFO ds

 2. while Q ≠ ∅
 3. u = Q.dequeue()
 4. for each v adjacent to u
 5. if v.c == white
 6. v.c = gray
 7. v.d = u.d + 1
 8. v.π = u
 9. Q.enqueue(v)
10. u.c = black

4/2/19

9

Breadth-First Search

-  each node enqueued
and dequeued once =
O(V) time

-  each edge considered
once (in each
direction on
undirected G) =
O(E) time

•  total = O(V + E)
 = O(V2) (w-c)

Complexity
(Adjacency List)

BFS (G, s):
 0. s.c = gray; s.π = NIL
 1. Q.enqueue (s) // Q is a FIFO ds

 2. while Q ≠ ∅
 3. u = Q.dequeue()
 4. for each v adjacent to u
 5. if v.c == white
 6. v.c = gray
 7. v.d = u.d + 1
 8. v.π = u
 9. Q.enqueue(v)
10. u.c = black

Analysis of Breadth-First Search

The ultimate goal of the proof of correctness is to show that
v.d = δ(s,v) when the algorithm is done and that a path is
found from s to all reachable vertices.

L. 22.1 : children of a node u are given a higher d value than u.
L. 22.2 : for every edge (u,v), the shortest path from s to v can

be no longer than the (shortest path from s to u) + 1.
L. 22.3 : at any time, Q holds at most 2 distinct d values. I.e., the

range of values in Q is at most 2. Why?
C. 22.4: the d values are monotonically increasing over time as

the algorithm runs.

Shortest-path distance δ(s,v) : minimum number of edges
in any path from vertex s to v. If no path exists from s to v,
then δ(s,v) = ∞.

4/2/19

10

Theorem 22.5: (Correctness of BFS)
Let G = (V, E) be a directed or undirected graph, and suppose that BFS is
run from a given source vertex s ∈ V. Then, during execution, BFS
discovers every vertex v ≠ s that is reachable from the source s, and upon
termination, v.d = δ(s,v) for every reachable or unreachable vertex v.

Proof by contradiction.

Assume that for some vertex v that v.d ≠ δ(s,v) after running BFS. Also,
assume that v is the vertex with minimum δ(s,v) that receives an incorrect d
value. By Lemma 22.2, it must be that v.d > δ(s,v).
Case 1: v is not reachable from s. This is a contradiction to the assumption
that v is reachable, and the Thm holds.
Case 2: v is reachable from s. Let u be the vertex immediately preceding v
on a shortest path from s to v, so that δ(s,v) = δ(s,u) + 1. Because
δ(s,u) < δ(s,v) and because v is the vertex with the minimum δ(s,v) that
receives an incorrect d value, u.d = δ(s,u).

So we have v.d > δ(s,v) = δ(s,u) + 1 = u.d + 1.

Consider the time t when u is dequeued. At time t, v is either white, gray,
or black. We can derive a contradiction in each of these cases.

Case 1: v is white. Then in line 12, v.d = u.d+1.

Case 2: v is black. Then v was already dequeued, and therefore
 v.d ≤ u.d (by L. 22.3).

Case 3: v is gray. Then v turned gray when it was visited from some
vertex w, which was dequeued before u. Then v.d = w.d + 1. Since
w.d ≤ u.d (by L. 22.3), v.d ≤ u.d + 1.

Each of these cases is a contradiction to v.d > δ(s,v), so we conclude that
v.d = δ(s,v). n

4/2/19

11

Breadth-First Trees
BFS builds a breadth-first tree that can be identified by using
the π values at each node.

The edges defined by each v.π are called tree edges.

Print-Path (G, s, v) // finds the tree edges between s and v,
 1. if v == s // starting at v
 2. print s
 3. else
 4. if v.π == NIL
 5. print "no path from " s " to " v " exists"
 6. else
 7. Print-Path(G, s, v.π)
 8. print v

Breadth-First Search v2
BFS (G, s):
 0. let marked be a boolean array of size |V| // init all false
 1. let edgeTo be an array of |V| integers
 2. Q.enqueue (s)
 3. marked[s] = true
 4. while Q ≠ ∅
 5. u = Q.dequeue()
 6. for each v adjacent to u
 7. if marked[v] == false
 8. edgeTo[v] = u
 9. marked[v] = true
10. Q.enqueue(v)

4/2/19

12

Enumerating shortest path, sàv
pathTo(v):
 1. if (!marked[v]) return false
 2. Stack<Integer> path = new Stack<Integer>()
 3. for (int x = v; x != s; x = edgeTo[x])
 4. path.push(x)
 5. path.push(s)
 6. return path

When pathTo finishes, the path will contain the path from s to
v and they can be popped off the stack in order.

Analysis of Breadth-First Search
Proposition A1: For any vertex v reachable from s, BFS
computes a shortest path from s to v such that no path
from s to v has fewer edges.

Informal proof:
It is easy to prove by induction that Q always consists of zero
or more vertices of distance k from s, followed by zero or
more vertices of distance k+1 from s, for some integer k ,
starting with k = 0. This property implies, in particular, that
vertices enter and leave Q in order of their increasing
distance from s. When a vertex v enters Q, no shorter path to
v will be found before v comes off Q, and no path to v that is
discovered after v comes off Q can be shorter than the path
length s to v.

4/2/19

13

Analysis of Breadth-First Search
Proposition A2: BFS takes time proportional to V + E in
the worst case.

Informal proof:
BFS marks all the vertices connected to s in time proportional
to the degree of s. If the graph is connected, this sum equals
the sum of the degrees of all the vertices, or 2E.

Initializing the marked[] and edgeTo[] arrays takes time
proportional to V.

Example BFS Traversal

G

EA

J I

H

B

FC

D

Order of visiting: a1 c2 d3 e4 f5 b6 g7 h8 i9 j10

Distance of vertex : 0 1 1 1 2 2 ∞ ∞ ∞ ∞

4/2/19

14

Breadth-first Search Forest
G

E

A

J

I

H

B

F

C D

Tree edges are solid lines and dashed lines are cross
edges.

Bipartite Graphs
A graph is bipartite if all its vertices can be
partitioned into two disjoint subsets X and Y so
that every edge connects a vertex in X with a
vertex in Y, i.e., if its vertices can be colored in
2 colors so that every edge has its end points
colored in different colors.

EA

BF

C

D

4/2/19

15

Bipartite Graphs
Explain how BFS could be used to detect
a bipartite graph.

EA

BF

C

D

EA

B

F

CD

Mark the source, A,
with color1, mark the
nodes at level 1 with
color2, and so on.
Every node on an
even numbered level
will be color1 and on
every odd level color2

Bipartite Graphs

Is this graph bipartite?

No. The edge (B,C) would have to
connect nodes of the same color

C

A B

D

4/2/19

16

Applications of BFS
Based upon the BFS, there are O(V + E)-time
algorithms for the following problems:
•  Testing whether graph is connected.
•  Computing a spanning forest of graph.
•  Computing, for every vertex in graph, a path with the

minimum number of edges between start vertex and
current vertex or reporting that no such path exists.

•  Computing a cycle in graph or reporting that no such
cycle exists.

