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Hash Tables (Ch. 11)
Many applications require a dynamic set that supports only Insert, 
Delete, and Search.  E.g., a dictionary ADT.
A hash table is, usually, an array.  It tries to get the benefit of array’s
direct addressing when we may have more than one key per address.

Definition:  
•    U is the "key space", the set of all possible keys 
•    K ⊆ U  is the set of keys seen

Goals:
•   fast implementation of all operations -- O(1) time
•   space efficient data structure -- O(n) space if n elements in dictionary

Approach 1:  Linked Lists
Linked List Implementation
 - Insert(x) : add x at head of list
 - Search(k) : start at head and scan list
 - Delete(x) : start at head, scan list, and then delete if found

Running Times:  (assume n elements in list)
 - Insert(x) :   O(1) time
 - Search(k) : worst-case -- element at end of list:  n operations
                      average-case -- element at middle of list: n/2 ops
                      best-case -- element at head of list:  1 op
 - Delete(x) :  same as searching
We'd like O(1) time for all operations, we have O(n) for two.
Space Usage:  O(n) space -- very space efficient, only uses 
what is needed to store the data at any time.

Approach 2:  Direct-Addressing
Direct-Address Table  Assume U = {0, 1, 2, ..., m}.
The data structure is an ARRAY T[ 0...m ]
 - Insert(x) : T[ key[x] ] := x
 - Search(k) : return T[ k ]
 - Delete(x) : T[key[ x ]] := NIL

Running Times:  (assume n elements in list)
 - Insert(x) :   O(1) time
 - Search(k) : O(1) time
 - Delete(x) :  O(1) time
Great running time!
Space Usage:  (assume n elements to be stored in list).
-  O(m) space always!
-  bad if n << m   

Approach 3:  Hashing
Hashing  
 - hash table (an array) H[0..m], where m << |U|

- amount of storage closer to what is really needed
 - hash function h is a mapping of keys to indices in H
 - h : U → {0, 1, ..., m}

Problem:  there will be some collisions; that is, h will map some keys to 
the same position in H (i.e., h(k1) = h(k2) for k1 ≠ k2).

Different methods of resolving collisions:
1.   chaining: put all elements that hash to same location in a linked list at 

that location.
2.  open addressing: each time there is a collision, a probe number 

(initially 1) is incremented.  There are various types of probe 
sequences:
-  linear probing 
-  quadratic probing 
-  double hashing 

Hash Functions
•   The mapping of keys to indices of a hash table is called a  

   hash function

•  A hash function is usually the composition of two functions,  
  a hash code map and a compression map. 

– An essential requirement of the hash function is to map equal keys 
to equal indices 
– A “good” hash function minimizes the probability of collisions 

Purpose of hash function is to translate an extremely large 
key space into a reasonably small range of integers, i.e., to 
map each key k to a position in the hash table. 

Choosing Hash Functions
Ideally, a hash function satisfies the Simple Uniform Hashing 
Assumption.  Unfortunately, we cannot usually achieve this...so
we use heuristics.

Assumption:  Simple Uniform Hashing 
 - Any key is equally likely to hash to any location  
   (index, slot) in hash table 
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Hash-Code Maps

1) Component sum: for numeric types with more than 32 bits, we can add 

the 32-bit components, i.e., sum the high-order bits with the low-order bits.  

Integer result is the hash code. 

A hash function assigns each key k in our dictionary an integer  
value, called the hash code or hash value.  This integer does 
not necessarily have to be in the range [0, m-1] and it can be  
negative. 

An essential feature of a hash code is consistency, i.e., it should 
map all items with key k to the same integer. 

Common hash code maps: 

Hash-Code Maps

2)  Polynomial accumulation: for strings of a natural language, combine 
the character values (ASCII or Unicode) a0a1 ... an-1 by viewing them as 
the coefficients of a polynomial: 
    a0 + a1x + a2x2 ...+ an-1xn-1 

   
 -The polynomial is computed with Horner’s rule at a fixed value x (a non-

zero constant): 
 
                       a0  + x (a1  + x (a2 + ... x (an-2+ x an-1) ... )) 
 
   -The choice x = 33, 37, 39, or 41 gives at most 6 collisions on a 

vocabulary of 50,000 English words 

Common hash code maps (cont.): 

Compression Maps

 Division method: h(k) = k mod m 
–  the table size m is usually chosen as a prime number to 

help “spread out” the distribution of hashed values 

Normally, the range of possible hash codes generated for a set of keys 
will exceed the range of the array.  
   
So we need a way to map this integer into the range [0, m-1]. 

0      1       2      3       4       5       6      7      8     9      10 

For example, each pair of keys 5 and 16, 22 and 11, 2 and 13 would  
hash to the same index if m = 11.   
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Collision Resolution by Chaining
Chaining:  Use array of linked lists.  Put all keys that hash to the 

same location in a linked list (insert keys at head of list).

0 1           ... mH:

x

y

i         ...

h(x) = h(y) = i

Insert(x) :   O(1) time

Search(x):  O(n) time (w-c)

Delete(x):   O(n) time (w-c) NOTE:  The idea of hashing is to get the 
average-case behavior down to θ(1) for 
all operations

m-1m-2

Collision Resolution by Open Addressing
In this method, the hash function includes the probe number (i.e., 
how many attempts have been made to find a slot for this key) as
an argument.

- the probe sequence for key k = h(k,0), h(k,1),..., h(k,m-1)

- In the worst case, every slot in table will be examined, so stop  
        looking either when the item with key k is found (if searching) or  

  an empty slot is found (if inserting)

Modifying the placement using the probe value is known as rehashing.

Linear Probing (Open Addressing)
Linear Probing:  Simplest rehashing functions (e.g., add 1 for each probe)  
the ith probe (where i is initially 0) h(k, i) is

h(k, i) = (h'(k) + i) mod m

•  h'(k) is ordinary hashing function, tells where to start the search.
•  search sequentially through table (with wrap around) from starting point. 

How many distinct probe sequences are there?  m
•  each starting point gives a probe sequence
•  there are m starting points 

plus: easy to implement
minus:  leads to clustering (long run of occupied slots in H), yields 

bad performance if a key collides with an element in a cluster (also 
known as primary clustering).
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Linear Probing Example
•  h(k, i) = (h(k) + i ) mod m  (i is probe number, initially, i = 0) 

•  Insert keys:  18  41  22  44  59  32  31  73  (in that order) 

1841 2244 59 32

44 3231

31

73

73
0      1     2     3     4      5     6     7     8      9     10    11   12  

If a collision occurs, when j = h(k), we try next at A[(j+1)mod m], then  
A[(j+2)mod m], and so on.  When an empty position is found the item is  
inserted. 
 
Each time key is compared to number in the array, there is a collision. 

How many collisions occur in this case?

h(k) = k mod 13
m = 13

11

Quadratic Probing (Open Addressing)
Quadratic Probing:  the ith probe h(k,i) is

h(k, i) = (h'(k) + c1 ⋅ i  + c2 ⋅  i2) mod m
•  c1 and c2 are constants 
•  h'(k) is ordinary hash function, tells where to start the search
•  later probes are offset by an amount quadratic in i (the probe 

number).

How many distinct probe sequences are there?  m
•  each starting point gives a probe sequence
•  there are m starting points

plus:  easy to implement
minus:  leads to secondary clustering

Quadratic Probing
       Insert keys:  18  41  22  44  59  32  31  73  (in that order)  

1841 22 445932

4431

3173
0      1     2     3     4      5     6     7     8      9     10    11   12  

How many collisions occur in this case?73

44 % 13 = 5 (collision), next try:  (5 + 2 ⋅ 1 +  3 ⋅ 12 ) % 13 = 10

h(k) = k mod 13 
m = 13 
c1 = 2, c2 = 3 
 

31

31 % 13 = 5 (collision), next try:  (5 + 2 ⋅ 1 +  3 ⋅ 12 ) % 13 = 10 % 13 = 10 (collision)
next try: (5 + 2 ⋅ 2 + 3 ⋅ 22 ) % 13 =  21 % 13 = 8

73 % 13 = 8 (collision), next try: (8 + 2 ⋅ 1+ 3 ⋅ 12 ) % 13 = 0

h(k,i) = (h(k) + c1 ⋅ i + c2 ⋅ i2) mod m   
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Double Hashing (Open Addressing)

Double Hashing:  the ith probe h(k,i) is
h(k, i) = (h1(k) + h2(k)  ⋅ i) mod m

•  h1(k) is ordinary hash function, tells where to start the search
•  h2(k) is ordinary hash function that gives offset for subsequent  

probes.
Note:   h2(k) should be relatively prime to m.

How many distinct probe sequences are there? 
•  there are m starting points
•  starting point and offset can vary independently

Double Hashing Example
•  h1(K) = K mod m      
•  h2(K) = K mod (m – 1) 
•  The ith probe is h(k, i) = (h1(k) + h2(k) ⋅ i) mod m
•  we want h2 to be an offset to add

     Insert keys:  18  41  22  44  59  32  31  73  (in that order) 

1841 2244 59

44

32

31

3173
0      1     2     3     4     5     6     7     8      9     10    11   12  

How many collisions occur in this case?

44 % 13 = 5 (collision), next try:  (5 + (44 % 12)) % 13 = 13 % 13 = 0

31 % 13 = 5 (collision), next try:  (5 + (31 % 12)) % 13 = 12 % 13 = 12

m = 13 
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Analyzing Open Addressing

If the load  α < 1, then the expected number of probes in a successful 
search is 
                                   ≤ (1/ α )ln (1/(1-α ))

Thus, for example, we have:
o  if the hash table is half full, (α  =  .5), then the expected number of 

probes in a successful search is 2ln 2 < 1.386.
o  if the hash table is 90% full, (α  =  .9), then the average number of 

probes in a successful search is 1.1 ln 10  <  2.558.

If α is a constant ≤ 1, a successful search runs in O(1) time.

α = n/m (load factor).  We need α ≤ 1 (table cannot be overfilled).


