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Lower Bounds for Comparison-Based 
Sorting Algorithms (Ch. 8) 

In all comparison-based sorting algorithms, the sorted order results  
only from comparisons between input elements. 
 

We have seen several sorting algorithms that run in Ω(nlgn) time in 
the worst case (meaning there is some input on which the algorithms 
run in at least Ω(nlgn) time). 

•   mergesort 
•   heapsort 
•   quicksort 

Is it possible for any comparison-based sorting algorithm to do better?  

Lower Bounds for Sorting Algorithms 

Theorem:  Any comparison-based sort must make Ω(nlgn) 
comparisons in the worst case to sort a sequence of n elements. 
(Across all comparison-based sorting algorithms, no worst case  
runs faster than nlgn time.) 

But how do we prove this? 
 

We'll use the decision tree model to represent any sorting algorithm 
and then argue that no matter the algorithm, there is some input  
that will cause it to run in Ω(nlgn) time. 
 
Question:  How many ways are there to order n elements? 

The Decision Tree Model 
Given any comparison-based sorting algorithm, we can represent 
its behavior on an input of size n by a decision tree.  Note: we need 
only consider the comparisons in the algorithm (the other operations 
only make the algorithm take longer). 
 

•   each internal node in the decision tree corresponds to one of the 
         comparisons in the algorithm. 
 

•   start at the root and do first comparison (e.g.,  x:y)  
    - if x ≤ y take left branch, if x > y take right branch, etc. 
 

•   each leaf represents one possible ordering of the input 
 

 ⇒  One decision tree exists for each algorithm and input size 

The Decision Tree Model 
Example:  decision tree with n = 3, with elements A[1..3] has 3! = 6 leaves 
(sorting in ascending order) 

A[1]	  vs	  A[2]	  

A[2]	  vs	  A[3]	   A[1]	  vs	  A[3]	  

A[1]	  vs	  A[3]	   A[2]	  vs	  A[3]	  A[1],	  A[2],	  A[3]	  

A[1],	  A[3],	  A[2]	   A[3],	  A[1],	  A[2]	  

A[2],	  A[1],	  A[3]	  

A[2],	  A[3],	  A[1]	   A[3],	  A[2],	  A[1]	  
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Note:  The length of the longest root to leaf path in this tree is h 
 

 =  worst-case number of comparisons 

 ≤  worst-case number of operations of algorithm 

The	  Ω(nlgn)	  Lower	  Bound	  	  
Theorem: Any decision tree for sorting n elements has height Ω(nlgn) 
(therefore, any comparison-based sorting algorithm requires Ω(nlgn) 
comparisons in worst case). 

Proof: Let h be the height of the tree.  Then we know 
•    tree has at least (≥) n! leaves 
•    tree is binary, so it has at most (≤) 2h leaves  
 

2h  ≥  number of leaves  ≥  n! 
 

  2h           ≥    n!  

  lg(2h)  ≥   lg(n!) 

          h       ≥  Ω(nlgn)  (Eq. 3.18)     ¨ 
 

Optimal Sorting Algorithms
•  This lower bound proof tells us that heap-sort 

and merge-sort are asymptotically optimal 
comparison-based sorting algorithms.  

•  Randomized-Quick-Sort is asymptotically 
optimal with high probability. 

•  We also know that insertion-sort, selection-
sort, and bubble-sort are not asymptotically 
optimal comparison-based algorithms.
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Beating the lower bound ... 
non-comparison-based sorts

Idea: Algorithms that are NOT comparison-based might be faster. 

There are three such algorithms presented in Chapter 8: 
•   counting sort 
•   radix sort 
•   bucket sort 

These algorithms 
•   run in O(n) time (under certain conditions) 
•   either use information about the values to be sorted (counting  
   sort, bucket sort), or 
•   operate on "pieces" of the input elements (radix sort) 

Coun<ng	  Sort	  
Requirement: input elements are integers in known range [0..k] for  
some constant k. 
 

Idea:  for each input element x, find the number of elements ≤  x (say 
this number = m) and put x in the (m+1)st spot in the output array. 

Counting-Sort(A, k) 
// A[1..n] is input array, C[0..k] is initially all 0's, B[1..n] is output array 
// (initially all 0’s) 
 

1.  for i = 1 to A.length 
2.         C[A[ i ]] = C[A[ i ]] + 1   // Count number of times each value appears in A 

      
3.  for i  = 1 to k                        // Make C into a "prefix sum" array, where C[ i ] 
4.         C[ i ] = C[ i ] + C[ i-1 ]   // contains number of elements <= i 

5.  for j = A.length downto 1 
6.         B[C[A[ j ]]] = A[ j ] 
7.          C[A[ j ]] = C[A[ j ]] - 1 Running	  ,me	  of	  Coun,ng-‐Sort?	  

Running Time of Counting Sort
for loop in lines 1-2 takes θ(n) time. 
for loop in lines 3-4 takes θ(k) time. 
for loop in lines 5-7 takes θ(n) time. 
 

 In practice, use counting sort when we have k = θ(n),  
 so running time is θ(n). 

 
This version of counting sort has the important property of stability. 
   

A sorting algorithm is stable when numbers with equal values appear 
in the output array in the same order as they do in the input array. 
 
Important when satellite data is stored with elements being sorted and 
when counting sort is used as a subroutine for radix sort, the next NCB  
algorithm we'll look at. 

Overall	  <me	  is	  θ(k	  +	  n).	  

Radix Sort
Let d be the number of digits in each input number. 

Radix-Sort(A, d) 
1. for i = 1 to d 
2.      use stable sort to sort array A on digit i    

Note: 
•   radix sort sorts the least significant digit first. 
 
•   correctness can be shown by induction on the digit being sorted. 
 
•   counting sort is often used as the stable sort in step 2. 

Running	  ,me	  of	  Radix-‐Sort?	  

Radix	  Sort	  
Let d be the number of digits in each input number. 

Radix-Sort(A, d) 
1. for i = 1 to d 
2.      use stable sort to sort array A on digit i       

Running time of radix sort:   O(dTcs(n)) 
•   Tcs is the time for the internal sort.  Counting sort gives  
    Tcs(n) = O(k + n), so O(dTcs(n)) = O(d(k + n)), 
    which is O(n) if d = O(1) and k = O(n). 
 

Bucket Sort
Assumption:  input elements distributed uniformly over some known 
range, e.g., [0,1). (Appendix C.2 has definition of uniform distribution) 

Bucket-Sort(A, x, y) 
1. divide interval [x, y) into n equal-sized subintervals (buckets) 
2. distribute the n input keys into the buckets 
3. sort the numbers in each bucket (e.g., with insertion sort) 
4. scan the (sorted) buckets in order and produce output array 

If a bucket has > 1 key they are joined into a linked list. 

Running	  ,me	  of	  Bucket-‐Sort?	  
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Bucket Sort
Bucket-Sort(A, x, y) 
1. divide interval [x, y) into n equal-sized subintervals (buckets) 
2. distribute the n input keys into the buckets 
3. sort the numbers in each bucket (e.g., with insertion sort) as 

they are inserted in the bucket 
4. scan the (sorted) buckets in order and produce output array 

Running time of bucket sort: O(n) expected time 
Step 1:  O(1) for each interval = O(n) time total. 
Step 2:  O(n) time. 
Step 3:  The expected number of elements in each bucket is O(1) 

   (see book  for formal argument, section 8.4), so total is O(n) 
Step 4:  O(n) time to scan the n buckets containing a total of n input 
    elements 
 
A bucket is really a linked list. 

Non-Comparison-Based Sorts 

Counting Sort        O(n + k)       O(n + k)              O(n + k)       no 
Radix Sort            O(d(n + k'))     O(d(n + k'))          O(d(n + k'))     no 
Bucket Sort                              O(n)                        no 

    worst-case    average-case       best-case       in place 
Running Time 

Summary NCB Sorts

Counting sort requires known range of data [0,1,2,..,k] and uses  
array indexing to count the number of occurrences of each value. 
 

Radix sort requires that each integer consists of d digits, and each  
digit is in range [1,2,..,k']. 
 

Bucket sort requires advance knowledge of input distribution (sorts n  
numbers uniformly distributed in range in O(n) time). 


