Comparing time complexity of algorithms

From Chapter 3, standard notation and common functions:

- When the base of a log is not mentioned, it is assumed to be base 2.

- Analogy between comparisons of functions $f(n)$ and $g(n)$ and comparisons of real numbers a and b:

 $$f(n) = O(g(n)) \text{ is like } a \leq b$$
 $$f(n) = \Omega(g(n)) \text{ is like } a \geq b$$
 $$f(n) = \Theta(g(n)) \text{ is like } a = b$$
 $$f(n) = o(g(n)) \text{ is like } a < b$$
 $$f(n) = \omega(g(n)) \text{ is like } a > b$$

- A polynomial of degree d is $\Theta(n^d)$.

- For all real constants a and b such that $a > 1, b > 0$,

 $$\lim_{x \to \infty} \frac{n^b}{a^n} = 0$$

 so $n^b = o(a^n)$. Any exponential function with a base > 1 grows faster than any polynomial function.

- Notation used for common logarithms:

 $lgn = \log_2 n$ (binary logarithm)
 $lnn = \log_e n$ (natural logarithm)

- More logarithmic facts:

 For all real $a > 0, b > 0, c > 0$, and n,

 $$a = b^{(\log_b a)} \quad // \text{ Ex: } 2^{(lgn)} = n^{(lg2)} = n$$
 $$\log_b a^n = n \log_b a$$
 $$\log_b x = y \text{ iff } x = b^y$$
 $$\log_b a = (\log_c a)/(\log_c b) \quad // \text{ the base of the log doesn’t matter asymptotically}$$
 $$a^{(\log_b c)} = c^{(\log_b a)}$$

 $$lg^n n = o(n^a) \quad // \text{ any polynomial grows faster than any polylogarithm}$$
 $$n! = o(n^n) \quad // \text{ factorial grows slower than } n^n$$
 $$n! = \omega(2^n) \quad // \text{ factorial grows faster than exponential with base } \geq 2$$
 $$lg(n!) = \Theta(nlgn) \quad // \text{ Stirling’s rule}$$
• Iterated logarithm function:

\[\lg^* n \] (log star of n)

\[\lg^{(i)} n \] is the log function applied i times in succession.

\[\lg^* n = \min(i \geq 0 \text{ such that } \lg^{(i)} n \leq 1) \]

<table>
<thead>
<tr>
<th>x</th>
<th>(lg^* x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, 1])</td>
<td>0</td>
</tr>
<tr>
<td>([1, 2])</td>
<td>1</td>
</tr>
<tr>
<td>([2, 4])</td>
<td>2</td>
</tr>
<tr>
<td>([4, 16])</td>
<td>3</td>
</tr>
<tr>
<td>([16, 65536])</td>
<td>4</td>
</tr>
<tr>
<td>([65536, 2^{65536}])</td>
<td>5</td>
</tr>
</tbody>
</table>

\[\lg^* 2 = 1 \]
\[\lg^* 4 = 2 \]
\[\lg^* 16 = 3 \]
\[\lg^* 65536 = 4 \]

Very slow-growing function.

COMPARING TIME COMPLEXITY OF FUNCTIONS:

Given 2 functions, which one grows faster (i.e. which one grows faster)?

Tech 1: Factor sides by common terms

\[n^2 \text{ and } n^3 \]

divide both sides by \(n^2 \) to get 1 and n

clearly n grows faster than 1, so \(n^2 = \mathcal{O}(n^3) \)

Tech 2: Take log of both sides, then substitute very large values for n

\[2^n \text{ and } n^2 \]

\[\lg 2^n = n \lg 2 = n(1) = n \]

\[\lg n^2 = 2 \lg n \]

substitute \(2^{100} \) for n in checking n and \(2 \lg n \),

we have \(2^{100} > 2 \times \lg 2^{100} = 200 \)

So \(2^n = \Omega(n^2) \)

Exponentials dominate polynomials.

Tech 3: Take the limit as \(n \) goes to \(\infty \).
• (in class example); Rank the functions given below by decreasing order of growth; that is, find an arrangement g_1, g_2, g_3, g_4 of the functions satisfying $g_1 = \Omega(g_2) = \Omega(g_3) = \Omega(g_4)$.

$$g_1 = 2^n \quad g_2 = n^{\frac{3}{2}} \quad g_3 = n\lg n \quad g_4 = n^{\lg n}$$

In the space below, list the functions given above in terms of decreasing running time (highest to lowest, left to right), as n increases to ∞ (justify your answers):

$$g_1 = \Omega(g_4) = \Omega(g_2) = \Omega(g_3)$$

Note: The explanations below are not proofs because we can’t prove anything by example. But they do give us an idea of the relative values of each function as n gets very large. Also, the substitution of 2^{128} for n is an arbitrary choice that allows us to compare functions with a very large value of n.

1. Explanation for $g_1 = \Omega(g_2)$:
 Show $2^n = \Omega(n^{\frac{3}{2}})$:
 Take lg of both sides to get $\lg 2^n = n\lg 2 = n$ and $\lg n^{\frac{3}{2}} = \frac{3}{2}\lg n$.
 Substitute large value for n: let $n = 2^{128}$. Then we are asking, which is bigger, 2^{128} or $\frac{3}{2}g_2^{128}$? We get $2^{128} > \frac{3}{2}g_2^{128}$ because $2^{128} \approx 3.4 \times 10^{38} > \frac{3}{2}128 = 192$.
 Alternately, we could just use the observation that exponentials dominate polynomials for any base > 1.

2. Explanation for $g_1 = \Omega(g_3)$:
 Show $2^n = \Omega(n\lg n)$:
 Take lg of both sides to get $\lg 2^n = n\lg 2 = n$ and $\lg(n\lg n) = \lg n + \lg\lg n$.
 Substitute large value for n: let $n = 2^{128}$. Then we are asking, which is bigger, 2^{128} or $\frac{3}{2}g_2^{128}$? We get $2^{128} > 128 + \lg g_2^{128}$.
 Alternately, we could just use the observation that exponentials dominate polynomials for any base > 1.

3. Explanation for $g_1 = \Omega(g_4)$:
 Show $2^n = \Omega(n^{\lg n})$:
 Take lg of both sides to get $\lg 2^n = n\lg 2 = n$ and $\lg(n^{\lg n}) = \lg n * \lg n$.
 Substitute large value for n: let $n = 2^{128}$. Then we are asking, which is bigger, 2^{128} or $2^{128} * \lg g_2^{128}$? We get $2^{128} > 128 * 128 = 16384$.

4. Explanation for $g_4 = \Omega(g_2)$:
 Show $n^{\lg n} = \Omega(n^{\frac{3}{2}})$:
 Take lg of both sides to get $\lg(n^{\lg n}) = \lg n * \lg n$ and $\lg(n^{\frac{3}{2}}) = \frac{3}{2} \lg n$.
 We can cancel a factor of $\lg n$ on each side to get $\lg n > \frac{3}{2}$, which is true because $\frac{3}{2}$
is a constant.

5. Explanation for $g_4 = \Omega(g_3)$:
 Show $n^{\log n} = \Omega(n \log n)$:
 Take lg of both sides to get $\log(n^{\log n}) = \log n \times \log n$ and $\log(n \log n) = \log n + \log \log n$.
 Substitute large value for n: let $n = 2^{128}$. Then $128 \times 128 = 16384 > \log_2^{128} + \log \log_2^{128} = 128 + 7 = 135$.

6. Explanation for $g_2 = \Omega(g_3)$:
 Show $(n^{3/2}) = \Omega(n \log n)$:
 Take lg of both sides to get $\log n^{3/2} = \frac{3}{2} \log n$ and $\log(n \log n) = \log n + \log \log n$.
 Substitute large value for n: let $n = 2^{128}$. Then $\frac{3}{2} \log_2^{128} = 192 > \log_2^{128} + \log \log_2^{128} = 135$. Since 192 is not that much larger than 135, choose n^{1024}. Then $\frac{3}{2} \log_2^{1024} = 1536 > 1024 + 10$.

4