Red Black Deletion Steps

Initial Steps

Pick one

- If the node we deleted has 2 NIL children, its replacement x is NIL.
- If the node we deleted has 1 NIL child and 1 non-NIL child, its replacement x is the non-NIL child.
- If the node we deleted has 2 non-NIL children, set x to the replacement's right child before the replacement is spliced out.

Pick one

- If the node we deleted is red and its replacement is red or NIL, we are done.
- If the node we deleted is red and its replacement is black, color the replacement red and proceed to the appropriate case.
- If the node we deleted is black and its replacement is red, color the replacement black. We are done.
- If the node we deleted is black and its replacement is NIL or black, proceed to the appropriate case.

Cases

0. Node x is red

1. Node x is black and its sibling w is red

2. Node x is black and its sibling w is black and both of w's children are black

3. Node x is black and its sibling w is black and
 - If x is the left child, w's left child is red and w's right child is black
 - If x is the right child, w's right child is red and w's left child is black

4. Node x is black and its sibling w is black and
 - If x is the left child, w's right child is red
 - If x is the right child, w's left child is red
Case 0: Node x is red
 1. Color x black. We are done.

Case 1: Node x is black and its sibling w is red
 1. Color w black
 2. Color $x.p$ red
 3. Rotate $x.p$
 a. If x is the left child do a left rotation
 b. If x is the right child do a right rotation
 4. Now we have to change w
 a. If x is the left child set $w = x.p.right$
 b. If x is the right child set $w = x.p.left$
 5. With x and our new w, decide on case 2, 3, or 4 from here.

Case 2: Node x is black and its sibling w is black and both of w's children are black
 1. Color w red
 2. Set $x = x.p$
 a. If our new x is red, color x black. We are done.
 b. If our new x is black, decide on case 1, 2, 3, or 4 from here. Note that we have a new w now.

Case 3: Node x is black and its sibling w is black and
 - If x is the left child, w's left child is red and w's right child is black
 - If x is the right child, w's right child is red and w's left child is black
 1. Color w's child black
 a. If x is the left child, color $w.left$ black
b. If \(x \) is the right child, color \(w.right \) black

2. Color \(w \) red

3. Rotate \(w \)
 a. If \(x \) is the left child do a right rotation
 b. If \(x \) is the right child do a left rotation

4. Now we have to change \(w \)
 a. If \(x \) is the left child set \(w = x.p.right \)
 b. If \(x \) is the right child set \(w = x.p.left \)

5. Proceed to case 4.

Case 4: Node \(x \) is black and its sibling \(w \) is black and
 - If \(x \) is the left child, \(w \)'s right child is red
 - If \(x \) is the right child, \(w \)'s left child is red

1. Color \(w \) the same color as \(x.p \)
2. Color \(x.p \) black

3. Color \(w \)'s child black
 a. If \(x \) is the left child, color \(w.right \) black
 b. If \(x \) is the right child, color \(w.left \) black

4. Rotate \(x.p \)
 a. If \(x \) is the left child do a left rotation
 b. If \(x \) is the right child do a right rotation

5. We are done.