
Modeling, Simulation and Analysis
CS 250

Spring 2018
Homework 1

Due in part BY 11:59PM Wednesday, February 28, and
in part AT THE BEGINNING OF CLASS Thursday, March 1

(Please see the notes below!)

• The non-programming portions of this homework, including printouts of all code, are
due at the beginning of class on March 1.

• The programming portions of this assignment are to be electronically submitted to our
course dropbox (using the submit250 script) by 11:59pm on February 28.

submit250 hw1 <your-directory-name>.

In your directory for this HW, please have a separate Matlab code file (i.e., a .m file)
for each exercise; please name each file appropriately for the exercise, and include an
identifier such as your name or userid as part of each file name. Please also include a
PDF file of your write-up document in the directory. Make sure only the files needed
for this HW are submitted!

• For all programming exercises in this course, the code should display answers to the
relevant questions to the screen when it is run, not just simply store answers in variables
that could be examined in the Matlab Workspace. Please use print statements to label
output appropriately; as part of that, please look up the fprintf and disp statements,
both of which can be used to display information to the screen. You may often find
that fprintf yields cleaner output—if so, please use fprintf when appropriate!

All output from programs should be descriptively labeled for readability.

• Common guidelines for good programming style apply:

– No line should be longer than 80 characters.

– Comment code effectively! At a minimum, every function or script should have
a descriptive comment (e.g., a contract); please also add additional comments
as needed for clarity and readability. Programs that require excessive testing to
determine correctness will not receive full credit—the code and documentation
(including comments!) should make it straightforward to test if the code works
correctly.

– Use whitespace (tabs, blank lines) for readability.

– Variable names should make it easy to tell the purpose of each variable.

– Avoid magic numbers in your code! Declare variable names for constant values,
etc. This can greatly simplify testing code with different key parameter values.
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– Please avoid break statements and related constructs—most of the time, they
indicate that more thought is needed in the design of the relevant loop.

• Some guidelines for style in Matlab:

– Large headings for figures may not fit in the Figure window opened by the plot

command. Please ensure any text put on figures will fit on a standard Figure
window; use line breaks as needed.

– Putting a clear statement (or a close all statement) in the middle or at the
end of your code can make it impossible to inspect data generated by your code
after it has finished its run. Please do not put clear statements in your scripts.

• The above guidelines apply to every programming assignment in this course. As usual,
not following style guidelines or submission instructions may result in deductions on
an assignment. Please feel free to ask me any questions about CS250 guidelines or
instructions!

These exercises are intended to be introductions to Matlab, which will be used as the language
for implementing projects for the remainder of the semester. Please feel free to ask your Prof.
any questions about programming in Matlab as the semester goes along!

1. Radioactive Decay! This exercise is based on Exercise 2.2.6 in your textbook;
please read the section on Unconstrained Decay, pages 28–30 of your textbook. In that
section, it is noted that radium-226 has a decay rate of about 0.0427869% per year.

(a) Write a Matlab script or function to compute and plot the function for what
fraction of an original quantity Q0 of radium-226 remains, as a function of years.
(See Figure 2.2.5 in your textbook for an example of a similar function for carbon-
14.)

(b) What fraction of an original quantity Q0 of radium-226 is left after 500 years?
After 5,000 years? (As always, explain your answer.)

(c) If 60% is left, how old is the radium-226? (As always, explain your answer.)

2. A Big Piece of Pi! In this exercise, you’ll estimate the value of π! In particular,
you’ll use simulation techniques involving random number generation for the estimate.
(These are called Monte Carlo simulation techniques; if you’d like, you can read more
about Monte Carlo techniques in Section 9.2 of your textbook, but it’s not necessary
for this exercise. Indeed, this exercise is very similar to Project 4 from Section 9.2,
page 387 of your textbook.)

Consider a unit circle (i.e., with radius r = 1), defined by equation x2 + y2 = 1.
Further, consider the “top right” quarter of that circle, in the quadrant defined by
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x ∈ [0..1], y ∈ [0..1]; note that the area of the entire circle (πr2 = π, because r = 1) is
4 times the area of the circle in that quadrant.

We can estimate the value of π indirectly by estimating the area of the circle. Here,
we’ll estimate the area of the quarter of the circle described above, using Monte Carlo
techniques. To do this, randomly generate points (x, y) in the range x ∈ [0..1], y ∈
[0..1]; keep track of how many points are inside the circle and calculate the ratio

number of points inside the circle

total number of points generated
.

Because the points are randomly generated, the fraction of them inside the circle is an
estimate of the fraction of the area of the quadrant that is taken up by the circle! (Do
you see why?) From that estimated area, we can then estimate the value of π.

So, for this exercise, write code to generate n points (where n is a variable / constant
in your code) and estimate the area of π based on the above method. Use that code
to do the following:

(a) Run repeated trials with different values of n, to determine the smallest value of
n for which you get good estimates of π. Start with n = 1000. In your write-up,
record all values of n you try, say what “good” value of n you selected, and explain
why you selected it.

(b) As part of visualizing the simulation, your code should plot a display showing
points inside and outside the circle. One possible display might be something like
Figure 1.

Figure 1: A display of points inside and outside a circle. Note that this particular plot does
not correspond to an especially good estimate of π!
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Look up options to the plot command to see how to plot things with different
colors, etc. Please be sure to look at the plots for every value of n you test that
isn’t too large! (For very large n, plotting can be very slow! If you test values of n
and decide not to plot them because plotting is too slow, just be sure to indicate
that in your write-up.)

(c) With the value of n selected for good estimates, use a loop to run the code 1000
times, and output the maximum, minimum, and average values of π that were
estimated. (For this portion of the exercise, be sure not to generate any plots!)

(d) All of this was done with r = 1. In your write up, explain what would be different
if r were some other (positive) number. Could you make this approach work to
estimate π with a different r? If so, how would you change your code to do that?
If not, why not? (You do not need to enter or run any new code for this—it’s for
the write-up only—but if you’d like to include different code in your write-up as
part of your answer, you’re welcome to do so.)

Optional Practice Exercises

The exercises below are not to be submitted and will not be graded. They are, however,
excellent practice exercises, covering useful material for Modeling & Simulation in Matlab.
You are encouraged to work on them and discuss them with your classmates or your Prof.!

• Randomness! Write a Matlab script or function that will use the random-number
generator rand to help you determine the number of random numbers needed such
that . . .

1. . . . the sum of the numbers is at least 10

2. . . . the sum of the numbers is at least 100

3. . . . a number between 0.475 and 0.525 is generated

4. . . . the mean of the numbers generated is within 0.05 of 0.5

5. . . . the mean of the numbers generated is within 0.01 of 0.5

You are welcome to submit one script that does all of the above, or separate functions
for each.

In addition to submitting your code, please write (as part of your on-paper HW sub-
mission) the answers to the above five questions, and also write a paragraph or so that
answers the following questions and demonstrates your understanding of programming
using random number generators.

– What gives you confidence in your answers?

– How many times did you run the script before you settled on an answer for each
of the 5 questions, and why?

– Which of those 5 answers were easiest to predict without programming (if any),
and why?
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• A Staggering Exercise? This exercise asks you to implement 1-dimensional random
walks : In a random walk, a walker starts at a point and moves in some randomly
chosen way at each timestep. (You can read about random walks in Module 9.5 in
your textbook, but that is not necessary for this exercise.) Note that because this is
a 1-dimensional walk, there are only 2 directions in which a walker can move, positive
or negative.

Here, your walkers will all start at the origin (point 0) and walk inside an area with
boundaries at +B and −B units from the origin (where B is a parameter for the
simulation). At each timestep, each walker takes a step of randomly chosen amount,
as selected by the randn function; so, code for a walk of N steps by a single walker
might look something like

steps(1) = 0;

for i = 2:N

steps(i) = steps(i-1) + randn;

end

For purposes of this exercise, we will say the first step is the one with index 1, and
it is at position 0, for all walkers. (One might in principle say, then, the walkers
actually take N − 1 steps, not counting the initial placement as the first step. By our
conventions, though, the initial placement is the first step.)

If a walker hits or exceeds boundary distance B, it should stay frozen at its position
for the remainder of the simulation.

Write a Matlab script (or function) to do the following:

1. Simulate W random walks, each with numSteps steps, and boundary distance B.
Set up your simulation to have W = 20, numSteps = 5, and B = 5, but avoid the
use of “magic numbers”—explicitly have W , numSteps, and B as variables /
constants to make it straightforward to run the same simulations with different
parameter values. (Please feel free to ask your Prof. any questions about what
this entails, or about the terminology involved!)

2. Plot the data of every walk, showing the position of each walker at each step. One
way to do this is a figure something like Figure 2, but you are welcome to visualize
data differently, as long as your method is effective—experiment and find what
works for you! Be sure to label your figure(s) to ensure readability.

3. Calculate the average number of steps before a walker “collides”—i.e., reaches or
exceeds the boundary distance—for those walkers that do collide.

4. Plot the number of surviving (non-frozen) walkers as a function of the simulation
step. As always, please label the axes / plot to ensure easy readability.

5. For the above two items of data—the average number of steps before a collision
(for walkers that collide) and the number of surviving walkers at each step—how
do those data vary with the number of steps in the simulation? With the value
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Figure 2: A display of random walks, graphing position at each timestep.

of B? With the ratio
numSteps

B
? Run several simulations and describe your

findings. (Be sure to describe what simulations you ran to arrive at your findings,
as part of your write-up!)

Parts (a)–(d) above are coding exercises and need not have separate on-paper answers;
part (e) above should be answered in your on-paper write-up.
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