
Processing Text

8 September 2025

CMPU 366 · Computational Linguistics

Where are we?

Our textbook is called Speech and Language
Processing, but this class will be focused on text.

Why might we do that?

What isn’t a text corpus?

Text on computers

Encodings

mapping

ASCII

ASCII
 _ . . .
 .' '; '-' '-'|-.
 ('------.')
 ; \ /
 : ' ' |/
 '._._ \ .;
 .-' ;--. '--' /
 / \-'---.___.'
 | / 7 \(>o<) /\
 | | \ | . \ \
 |=====| | . \ |-)
 |-'-' ./_.-._.\|"
 '-.----' |
 | | | | |
 | | | | |
 |_____|_|___|_|
snd (-------',----'.
 '-'-----'-----'

Babar
By Shanaka Dias

https://www.asciiart.eu/cartoons/other

ASCII

telnet towel.blinkenlights.nl

ASCII

telnet towel.blinkenlights.nl

ASCII American Standard Code for Information Interchange

01000001 01010011 01000011 01001001 01001001

"A" "S" "C" "I" "I"

Bits

65 83 67 73 73 Code point

Character

Dec Char Dec Char Dec Char Dec Char
--------- --------- --------- ----------
 0 NUL (null) 32 SPACE 64 @ 96 `
 1 SOH (start of heading) 33 ! 65 A 97 a
 2 STX (start of text) 34 " 66 B 98 b
 3 ETX (end of text) 35 # 67 C 99 c
 4 EOT (end of transmission) 36 $ 68 D 100 d
 5 ENQ (enquiry) 37 % 69 E 101 e
 6 ACK (acknowledge) 38 & 70 F 102 f
 7 BEL (bell) 39 ' 71 G 103 g
 8 BS (backspace) 40 (72 H 104 h
 9 TAB (horizontal tab) 41) 73 I 105 i
 10 LF (NL line feed, new line) 42 * 74 J 106 j
 11 VT (vertical tab) 43 + 75 K 107 k
 12 FF (NP form feed, new page) 44 , 76 L 108 l
 13 CR (carriage return) 45 - 77 M 109 m
 14 SO (shift out) 46 . 78 N 110 n
 15 SI (shift in) 47 / 79 O 111 o
 16 DLE (data link escape) 48 0 80 P 112 p
 17 DC1 (device control 1) 49 1 81 Q 113 q
 18 DC2 (device control 2) 50 2 82 R 114 r
 19 DC3 (device control 3) 51 3 83 S 115 s
 20 DC4 (device control 4) 52 4 84 T 116 t
 21 NAK (negative acknowledge) 53 5 85 U 117 u
 22 SYN (synchronous idle) 54 6 86 V 118 v
 23 ETB (end of trans. block) 55 7 87 W 119 w
 24 CAN (cancel) 56 8 88 X 120 x
 25 EM (end of medium) 57 9 89 Y 121 y
 26 SUB (substitute) 58 : 90 Z 122 z
 27 ESC (escape) 59 ; 91 [123 {
 28 FS (file separator) 60 < 92 \ 124 |
 29 GS (group separator) 61 = 93] 125 }
 30 RS (record separator) 62 > 94 ^ 126 ~
 31 US (unit separator) 63 ? 95 _ 127 DEL

These are all of the
characters in ASCII.

1963	 ASCII, a 7-bit standard (with an unused 8th bit)

1987–2000	 ISO-8859, a series of 256-character 8-bit standards
Examples: Latin-1, Latin/Cyrillic, Latin/Greek, Latin/Hebrew,

But CJKV languages need bigger character sets, e.g., Big5 (two
bytes), GB 18030 and ISO 2022 (more complex).

How do you tell which one a file is using?

Today we mostly use Unicode. Unicode isn’t an
encoding; it’s a listing of code points.

It can be encoded in different ways:
UTF-32 is a 32-bit fixed-length encoding

UTF-8 and UTF-16 are variable-length encodings

Character Code point UTF-8 bits

A U+0041 01000001

ਐ U+0A10 11100000 10101000 10010000

https://www.unicode.org/versions/Unicode16.0.0/

https://blog.emojipedia.org/whats-new-in-unicode-16-0/

㋿
Introduced by Unicode 12.1 in 2019

https://unicodeplus.com/U+32FF

Computers have gotten

better at typography, but

they’ve made things more

difficult for NLP.

Computers have gotten

better at typography, but

they’ve made things more

difcult for NLP.

Things that can cause trouble:

Contextual characters (“quotation marks” rather than
"quotation marks")

Newlines (LF, CR, or CRLF)

Ligatures (scof)

Combining characters (j ͕̠ ̦̪ ͕
̓͛ ̊
̾ ̄

ͅ
w̧̧̳
̪ ̘
͊ ̋͗
̾

͢

͠
z ̢̘̞ ͈̺̞ ̩

̓̽̐
̋͗̆
̋ ̚

͟͜

)

https://twitter.com/jwz

https://ruby.social/@listrophy/111163151131980287

Introduction to Python development

M-x shell

M means the “meta”
key, which is what you
and I call “Escape”.

Ctrl-x 2
to split vertically

Other options:
vim

gedit

BBEdit

VSCode*

…

Other options:
vim

gedit

BBEdit

VSCode*

…

* I know this is the one you want to
choose, but it makes things more
complicated by using its own
Python runtime rather than what’s
installed on the system. If you
choose to use it, you’re on your
own.

Jupyter notebooks (like Google Colab) are great,
and they’re widely used in NLP and data science.

Feel free to use them for experimentation or when
you’re working on your final project, but – unless
otherwise noted – the assignments you turn in
should be normal, well-written Python files (.py),
not notebooks (.ipynb).

Demo: Files and encodings in Python

As an example of a file to read, we will use a
relatively small, unannotated document from Project
Gutenberg.

Project Gutenberg is an online collection of texts whose copyright has
expired. It contains texts in many languages.

Download the First Project Gutenberg Collection of
Edgar Allan Poe:
gutenberg.org/cache/epub/1062/pg1062.txt

http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/cache/epub/1062/pg1062.txt

with open("pg1062.txt") as f:
 for line in f:
 print(line)

Because we didn’t specify the encoding, Python will
use its default.

What’s the default? 🤷

It depends on the system you’re running on!

with open("pg1062.txt", encoding="utf-8-sig") as f:
 for line in f:
 print(line)

Download
gutenberg.org/ebooks/67094.txt.utf-8

https://www.gutenberg.org/ebooks/67094.txt.utf-8

with open("pg67094.txt", encoding="utf-8-sig") as f:
 for line in f:
 print(line)

with open("pg67094.txt", encoding="latin1") as f:
 for line in f:
 print(line)

Compare the output

If we want to write a file, change the "r" mode to "w":
with open("myoutfile.txt", "w") as f:
 print("First line of output", file=f)
 print("Second line of output", file=f)
 print("Here's a number:", 5, file=f)

Search

February 2011

LITERARY CHARACTER APB, $400:

His victims include Charity Burbage, Mad Eye
Moody & Severus Snape; he’d be easier to catch if
you’d just name him!

BEATLES PEOPLE, $200:

“And anytime you feel the pain, hey” this guy
“refrain, don’t carry the world upon your shoulders”

OLYMPIC ODDITIES, $800:

In the 2004 opening ceremonies, a sole member of
this team opened the Parade of Nations; the rest of
his team closed it.

Some of these questions are really hard for people
because you need to know so much trivia, and our
meat minds are bad at that.

But computers can store a lot; Watson had 21.6 TB
of storage, back in 2011.

LINUS’S LAW: “Given enough eyeballs, all bugs are shallow.”

https://en.wikipedia.org/wiki/Linus's_law

“Given enough text, all questions are easy.”

Regular expressions in Python

RE functions to know:

re.search

re.match

re.finditer

re.findall

re.compile

re.sub

import re

s = "Hello there"

m = re.search(r"\b(t?here)\b", s)

print(m.group(1))

import re

s = "Hello there"

m = re.search(r"\b(t?here)\b", s)

print(m.group(1))

Says this is a regular
expression. Otherwise, \b
won’t be interpreted correctly
as the class of word-boundary
markers.

import re

s = "Hello there"

m = re.match(r"\b(t?here)\b", s)

print(m.group(1))

import re

s = "Hello there"

m = re.match(r"\b(t?here)\b", s)

print(m.group(1))

Error! re.match only matches from the
beginning of the string. It’s equivalent to
starting the RE with ^.

import re

s = "Hello there, hello here, hello everywhere"

for m in re.finditer(r"\b(t?here)\b", s):
 print(m.group(1))

import re

s = "Hello there, hello here, hello everywhere"

for match in re.findall(r"\b(t?here)\b", s):
 print(match)

import re

s = "Hello there"

prog = re.compile(r"(Hello|howdy)")

m = prog.match("Hello there")
print(m.group(1))

m = prog.match("Howdy partner")
print(m.group(1))

import re

s = "Hello there"

prog = re.compile(r"(Hello|howdy)")

m = prog.match("Hello there")
print(m.group(1))

m = prog.match("Howdy partner")
print(m.group(1))

Compiling lets us
efficiently re-use
a regex.

import re

s = "Hello there"

t = re.sub("(Hello|Hi) there", r"\1", s)

print(t)

Practice: Information Extraction

Output will be triples (entity1, relation, entity2), e.g.,

("Vassar College", "located in", "Poughkeepsie, NY")

("Grace Hopper", "born in", "1906")

“[Regular expressions] are particularly useful for
searching in texts, when we have a pattern to search
for and a corpus of texts to search through. A
regular expression search function will search
through the corpus, returning all texts that match
the pattern.”
Jurafsky & Martin, § 2.1

Consider learning when people were born.

Consider learning when people were born.

What do you search for?

Let’s try some of these out!

As our corpus, we’ll look at an old snapshot of
English Wikipedia:

/data/366/wikipedia

born in [0-9]{4}

Don’t want to match places or other descriptions,
e.g.,

born in New York

born in poverty

#!/usr/bin/env python3

import fileinput
import re

prog = re.compile(r"((?:(?:[A-Z][a-z]+))+)\(born .*
([0-9]{4})\)")

for line in fileinput.input():
 m = prog.search(line)

 name = m.group(1).strip()
 year = m.group(2)
 print(f"(\"{name}\", \"born in\", \"{year}\")")

born in ([0-9]{4}|[0-9]+ (AD|BC))

born in ([0-9]{4}|[0-9]+ (AD|BC|CE|BCE))

born on the 8th of May, 1885

Another pattern:

born on .+ [0-9]{4}

https://en.wikipedia.org/wiki/David_Bowie

We could keep going!

These kind of searches let us learn lots of
information that’s stated in text.

Which companies bought which other companies.

What state is a town in?

Which musicians made which albums?

As we work on this information retrieval program,
we’ve been trying to fix two kinds of errors:

1 False positives: Matching strings that we shouldn’t
have matched (e.g., born in humble circumstances)

2 False negatives: Not matching things that we
should have matched (e.g., born on the first of
January, 1901)

Error types

Program thinks it
says when
someone was born

Program thinks it
doesn’t say when
someone was born

Actually says when
someone was born

Doesn’t actually says
when someone was born

True positive False positive

True negativeFalse negative

In NLP, we’re always dealing with these kinds of
errors.

Reducing the error rate for an application often
involves two antagonistic efforts:

Increasing accuracy or precision (minimizing false positives)

Increasing coverage or recall (minimizing false negatives)

Acknowledgments

This class incorporates material from:
Carolyn Anderson, Wellesley College

Katrin Erk, University of Texas at Austin

Katie Keith, Williams College

Xanda Schofield, Harvey Mudd College

Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

