
Language Models

15 September 2025

CMPU 366 · Natural Language Processing

Where are we?

What is a corpus?

Word type vs word token The cat sat on the mat.

What is tokenization?

Language models

The idea of a statistical language model (LM) is to
compute the probability of a sequence of words.

Why should we care about these probabilities?

Speech recognition
P(I will be back soonish) > P(I will be bassoon dish)

Speech recognition
P(I will be back soonish) > P(I will be bassoon dish)

Spelling correction
The office is about fifteen minuets from my house.

P(about fifteen minutes from) > P(about fifteen minuets from)

Speech recognition
P(I will be back soonish) > P(I will be bassoon dish)

Spelling correction
The office is about fifteen minuets from my house.

P(about fifteen minutes from) > P(about fifteen minuets from)

Machine translation
Translating The doctor recommended a cat scan,

P(La doctora recomendó una tomografía) >
P(La doctora recomendó una exploración del gato)

And more!

These are examples of computing
P(W) = P(w1, w2, w3, …, wn),

the probability of a sequence of words,

but language models also let us compute
P(wn | w1, w2, w3, …, wn−1),

the probability of a word given some previous words.

Why would that be useful?

For simplicity, we’ll talk
about “words”, but these
are really tokens.

Word prediction is also the basis for how large
language models (LLMs) work!

We’ll return to these systems in a few weeks; we’re building up the
foundations they’re built on.

	 P(The water of Walden Pond is so beautifully blue)?

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue)

=	 …

	 P(The water of Walden Pond is so beautifully blue)?

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue)

=	 … Chain rule of probability!

The chain rule of probability

Recall the definition of conditional probabilities,

P(B | A) = P(A, B) / P(A)

which we can rewrite to get

P(A, B) = P(A) P(B | A).

The chain rule of probability

If we have more variables, we get more terms, e.g.,

P(A, B, C, D) = P(A) P(B | A) P(C | A, B) P(D | A, B, C)

In general, the chain rule says

P(x1, x2, x3, …, xn) =	 P(x1) ·
	 P(x2 | x1) ·
	 P(x3 | x1, x2) ⋯ 
	 P(xn | x1, …, xn−1)

	 P(The water of Walden Pond is so beautifully blue)?

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue)

=	 P(The) P(water | The) P(of | The water) P(Walden | The water of) ⋯

	 P(The water of Walden Pond is so beautifully blue)?

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue)

=	 P(The) P(water | The) P(of | The water) P(Walden | The water of) ⋯

=	🤔 How do we compute this?

To estimate conditional probabilities, we use a text
corpus that we’ve tokenized, and we do some
counting!

P(blue | The water of Walden Pond is so beautifully)

= C(The water of Walden Pond is so beautifully blue)
 C(The water of Walden Pond is so beautifully)

C(x) is the count
of how many
times x occurs in
the corpus

In practice, we make a simplifying Markov
assumption that we can predict the probability of a
future event without looking too far into the past,
e.g.,

P(blue | The, water, of, Walden, Pond, is, so, beautifully)

≈ P(blue | so, beautifully)
Andrei Markov

We can estimate the true probabilities using n-grams
– sequences of text that are always n tokens long.

Colorless green ideas sleep furiously.

Colorless green ideas sleep furiously.

Unigrams:
Colorless

green

ideas

sleep

furiously

.

Colorless green ideas sleep furiously.

Bigrams:
<s> Colorless

Colorless green

green ideas

ideas sleep

sleep furiously

furiously .

. </s>

Colorless green ideas sleep furiously.

Bigrams:
<s> Colorless

Colorless green

green ideas

ideas sleep

sleep furiously

furiously .

. </s>

Beginning of example symbol

Colorless green ideas sleep furiously.

Bigrams:
<s> Colorless

Colorless green

green ideas

ideas sleep

sleep furiously

furiously .

. </s>

Beginning of example symbol

End of example symbol

Colorless green ideas sleep furiously.

Trigrams:
<s> <s> Colorless

<s> Colorless green

Colorless green ideas

green ideas sleep

ideas sleep furiously

sleep furiously .

furiously . </s>

 . </s> </s>

Colorless green ideas sleep furiously.

4-grams:
<s> <s> <s> Colorless

<s> <s> Colorless green

<s> Colorless green ideas

Colorless green ideas sleep

green ideas sleep furiously

ideas sleep furiously .

sleep furiously . </s>

furiously . </s> </s>

. </s> </s> </s>

What’s the best value of n?

That is, how many previous words do we need?

Given any choice of n, are n-grams a sufficient model
of language?

Language has long-distance dependencies:
The computer / computers which I had just put into the machine room
on the fifth floor is / are crashing.

But we can often get away with n-gram models.

Corpora and n-grams

https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

https://storage.googleapis.com/books/ngrams/books/datasetsv3.html

https://books.google.com/ngrams/info

https://books.google.com/ngrams/graph?content=David+Bowie,+Iggy+Pop&year_start=1800&year_end=2022&corpus=en&smoothing=3

https://books.google.com/ngrams/graph?content=Radcliffe+College,+Vassar+College&year_start=1800&year_end=2022&corpus=en&smoothing=3

https://kagi.com/images?q=cool+cat+saves+the+kids

https://www.nytimes.com/interactive/2022/12/22/opinion/words-you-cant-use-anymore.html

https://books.google.com/ngrams/graph?content=third+world,+global+south&year_start=1800&year_end=2022&case_insensitive=true&corpus=en&smoothing=3

https://books.google.com/ngrams/graph?content=hispanic,+latino,+latinx&year_start=1800&year_end=2022&case_insensitive=true&corpus=en&smoothing=3

Estimating n-gram probabilities

We estimate the probabilities of n-grams using the
maximum likelihood estimate (MLE) – the estimate
that maximizes the likelihood of the training data
given the model.

For unigram probabilities,
that’s the fraction of times the word occurs in the corpus:

For bigram probabilities,
that’s the number of times that word follows the other word divided
by the number of times the other word occurs in the corpus:

P(wi) =
C(wi)
|V |

P(wi ∣ wi−1) =
C(wi−1, wi)

C(wi−1)

For example, given the corpus
<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

we can compute and
get these probabilities:

	 P(I | <s>)	 = 2/3 = 0.67

	P(</s> | Sam)	 = 1/2 = 0.50

	P(Sam | <s>)	 = 1/3 = 0.33

	 P(Sam | am)	 = 1/2 = 0.50

	 P(am | I)	 = 2/3 = 0.67

	 P(do | I)	 = 1/3 = 0.33

P(wi ∣ wi−1) =
C(wi−1, wi)

C(wi−1)

Probability is assigned exactly based on the n-gram
count in the training corpus

Anything not found in the training corpus gets
probability 0.

Downside of MLE

Suppose you toss a coin 10 times and get 8 heads.

The MLE is that this coin comes down heads 8 times
out of 10.

Would you agree?

Downside of MLE

Suppose you toss a coin 10 times and get 8 heads.

The MLE is that this coin comes down heads 8 times
out of 10.

Would you agree?

This is the prior belief that influences beliefs even in
the face of contradicting evidence

Bayesian statistics measure degrees of belief:
Start with prior beliefs and update them in the face of evidence using
Bayes Theorem – more on this next week!

Berkeley Restaurant Project:
Sentences

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Berkeley Restaurant Project:
Bigram counts
From 9 222 sentences

w1

w2

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

w1

w2

i want to eat chinese food lunch spend

2 533 927 2 417 746 158 1 093 341 278

Normalize
by unigram

counts

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

Berkeley Restaurant Project:
Bigram probabilities

w1

w2

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0

We use the bigram model to compute sentence
probabilities:

	 P(<s> I want english food </s>)
=	P(I | <s>) ·
	 P(want | I) ·
	 P(english | want) ·
	 P(food | english) ·
	 P(</s> | food)
= 0.00031

As simple as they are, n-gram probabilities capture a
range of interesting facts about language:

P(english | want) = 0.0011

P(chinese | want) = 0.0065
World knowledge; culture

As simple as they are, n-gram probabilities capture a
range of interesting facts about language:

P(english | want) = 0.0011

P(chinese | want) = 0.0065

P(to | want) = 0.66

P(eat | to) = 0.28

P(food | to) = 0

P(want | spend) = 0

Syntactic preferences

World knowledge; culture

As simple as they are, n-gram probabilities capture a
range of interesting facts about language:

P(english | want) = 0.0011

P(chinese | want) = 0.0065

P(to | want) = 0.66

P(eat | to) = 0.28

P(food | to) = 0

P(want | spend) = 0

P(i | <s>) = 0.25

Syntactic preferences

World knowledge; culture

Discourse

A practical concern

When programming, we handle probabilities in log
space:

log(p1 · p2 · p3 · p4) = log p1 + log p2 + log p3 + log p4

It’s nice that adding is faster than multiplying, but the
main reason is that it avoids underflow.

This will be true
for the rest of
the class!

Numeric underflow:
a = 1e-10
b = 1e-90
c = 1e-30
d = 5e-130
e = 1e-40
f = 1e-100
a * b * c * d * e *f
→ 0.0

But, using log-space math:
from math import log
log(a) + log(b) + log(c) + log(d) + log(e) +
log(f)
→-919.4245992851843

Next time

Smoothing and generalization

How do we know if a language model is good?

Text generation using language models

Bring a computer!

Acknowledgments

This class incorporates material from:
Carolyn Anderson, Wellesley College

Nancy Ide, Vassar College

Katie Keith, Williams College

Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

