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Where are we?



What is a corpus?



Word type vs word token The cat sat on the mat.



What is tokenization?



Language models



The idea of a statistical language model (LM) is to 
compute the probability of a sequence of words. 

Why should we care about these probabilities?



Speech recognition 
P(I will be back soonish) > P(I will be bassoon dish)  



Speech recognition 
P(I will be back soonish) > P(I will be bassoon dish)  

Spelling correction 
The office is about fifteen minuets from my house. 

P(about fifteen minutes from) > P(about fifteen minuets from) 



Speech recognition 
P(I will be back soonish) > P(I will be bassoon dish)  

Spelling correction 
The office is about fifteen minuets from my house. 

P(about fifteen minutes from) > P(about fifteen minuets from) 

Machine translation 
Translating The doctor recommended a cat scan, 

P(La doctora recomendó una tomografía) >  
P(La doctora recomendó una exploración del gato) 

And more!



These are examples of computing 
P(W) = P(w1, w2, w3, …, wn), 

the probability of a sequence of words, 

but language models also let us compute 
P(wn | w1, w2, w3, …, wn−1), 

the probability of a word given some previous words. 

Why would that be useful?

For simplicity, we’ll talk 
about “words”, but these 
are really tokens.







Word prediction is also the basis for how large 
language models (LLMs) work! 

We’ll return to these systems in a few weeks; we’re building up the 
foundations they’re built on.



	 P(The water of Walden Pond is so beautifully blue)? 

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue) 

=	 …



	 P(The water of Walden Pond is so beautifully blue)? 
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=	 … Chain rule of probability!



The chain rule of probability

Recall the definition of conditional probabilities, 

P(B | A) = P(A, B) / P(A) 

which we can rewrite to get 

P(A, B) = P(A) P(B | A).



The chain rule of probability

If we have more variables, we get more terms, e.g., 

P(A, B, C, D) = P(A) P(B | A) P(C | A, B) P(D | A, B, C) 

In general, the chain rule says 

P(x1, x2, x3, …, xn) =	 P(x1) · 
	 P(x2 | x1) · 
	 P(x3 | x1, x2) ⋯  
	 P(xn | x1, …, xn−1)



	 P(The water of Walden Pond is so beautifully blue)?

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue)

=	 P(The) P(water | The) P(of | The water) P(Walden | The water of) ⋯



	 P(The water of Walden Pond is so beautifully blue)?

=	 P(The, water, of, Walden, Pond, is, so, beautifully, blue)

=	 P(The) P(water | The) P(of | The water) P(Walden | The water of) ⋯

=	🤔 How do we compute this?



To estimate conditional probabilities, we use a text 
corpus that we’ve tokenized, and we do some 
counting! 

P(blue | The water of Walden Pond is so beautifully) 

= C(The water of Walden Pond is so beautifully blue)  
       C(The water of Walden Pond is so beautifully)

C(x) is the count 
of how many 
times x occurs in 
the corpus



In practice, we make a simplifying Markov 
assumption that we can predict the probability of a 
future event without looking too far into the past, 
e.g., 

P(blue | The, water, of, Walden, Pond, is, so, beautifully) 

≈ P(blue | so, beautifully)
Andrei Markov



We can estimate the true probabilities using n-grams 
– sequences of text that are always n tokens long.



Colorless green ideas sleep furiously.



Colorless green ideas sleep furiously. 

Unigrams: 
Colorless 

green 

ideas 

sleep 

furiously 

.
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sleep furiously 
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End of example symbol



Colorless green ideas sleep furiously. 

Trigrams: 
<s> <s> Colorless 

<s> Colorless green 

Colorless green ideas 

green ideas sleep 

ideas sleep furiously 

sleep furiously . 

furiously . </s> 

 . </s> </s>



Colorless green ideas sleep furiously. 

4-grams: 
<s> <s> <s> Colorless 

<s> <s> Colorless green 

<s> Colorless green ideas 

Colorless green ideas sleep 

green ideas sleep furiously 

ideas sleep furiously . 

sleep furiously . </s> 

furiously . </s> </s> 

. </s> </s> </s>



What’s the best value of n?  

That is, how many previous words do we need?



Given any choice of n, are n-grams a sufficient model 
of language?



Language has long-distance dependencies: 
The computer / computers which I had just put into the machine room 
on the fifth floor is / are crashing. 

But we can often get away with n-gram models.



Corpora and n-grams



https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html


https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html


serve as the incoming 92 
serve as the incubator 99 
serve as the independent 794 
serve as the index 223 
serve as the indication 72 
serve as the indicator 120 
serve as the indicators 45 
serve as the indispensable 111 
serve as the indispensible 40 
serve as the individual 234



https://storage.googleapis.com/books/ngrams/books/datasetsv3.html


https://books.google.com/ngrams/info


https://books.google.com/ngrams/graph?content=David+Bowie,+Iggy+Pop&year_start=1800&year_end=2022&corpus=en&smoothing=3


https://books.google.com/ngrams/graph?content=Radcliffe+College,+Vassar+College&year_start=1800&year_end=2022&corpus=en&smoothing=3


https://kagi.com/images?q=cool+cat+saves+the+kids


https://www.nytimes.com/interactive/2022/12/22/opinion/words-you-cant-use-anymore.html


https://books.google.com/ngrams/graph?content=third+world,+global+south&year_start=1800&year_end=2022&case_insensitive=true&corpus=en&smoothing=3


https://books.google.com/ngrams/graph?content=hispanic,+latino,+latinx&year_start=1800&year_end=2022&case_insensitive=true&corpus=en&smoothing=3


Estimating n-gram probabilities



We estimate the probabilities of n-grams using the 
maximum likelihood estimate (MLE) – the estimate 
that maximizes the likelihood of the training data 
given the model.



For unigram probabilities,  
that’s the fraction of times the word occurs in the corpus: 

 

For bigram probabilities,  
that’s the number of times that word follows the other word divided 
by the number of times the other word occurs in the corpus: 

P(wi) =
C(wi)
|V |

P(wi ∣ wi−1) =
C(wi−1, wi)

C(wi−1)



For example, given the corpus 
<s> I am Sam </s> 

<s> Sam I am </s> 

<s> I do not like green eggs and ham </s> 

we can compute   and 
get these probabilities: 

	 P(I | <s>)	 = 2/3 = 0.67 

	P(</s> | Sam)	 = 1/2 = 0.50 

	P(Sam | <s>)	 = 1/3 = 0.33 

	 P(Sam | am)	 = 1/2 = 0.50 

	 P(am | I)	 = 2/3 = 0.67 

	 P(do | I)	 = 1/3 = 0.33

P(wi ∣ wi−1) =
C(wi−1, wi)

C(wi−1)



Probability is assigned exactly based on the n-gram 
count in the training corpus 

Anything not found in the training corpus gets 
probability 0.



Downside of MLE

Suppose you toss a coin 10 times and get 8 heads.

The MLE is that this coin comes down heads 8 times 
out of 10.

Would you agree?



Downside of MLE

Suppose you toss a coin 10 times and get 8 heads.

The MLE is that this coin comes down heads 8 times 
out of 10.

Would you agree?

This is the prior belief that influences beliefs even in 
the face of contradicting evidence

Bayesian statistics measure degrees of belief:
Start with prior beliefs and update them in the face of evidence using 
Bayes Theorem – more on this next week!



Berkeley Restaurant Project: 
Sentences

can you tell me about any good cantonese restaurants close by 

mid priced thai food is what i’m looking for 

tell me about chez panisse 

can you give me a listing of the kinds of food that are available 

i’m looking for a good place to eat breakfast 

when is caffe venezia open during the day



Berkeley Restaurant Project: 
Bigram counts
From 9 222 sentences

w1

w2

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0



w1

w2

i want to eat chinese food lunch spend

2 533 927 2 417 746 158 1 093 341 278

Normalize 
by unigram 

counts

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0



Berkeley Restaurant Project: 
Bigram probabilities

w1

w2

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0



We use the bigram model to compute sentence 
probabilities: 

	 P(<s> I want english food </s>)  
=	P(I | <s>) ·  
	 P(want | I) ·  
	 P(english | want) · 
	 P(food | english) · 
	 P(</s> | food) 
= 0.00031



As simple as they are, n-gram probabilities capture a 
range of interesting facts about language:

P(english | want) = 0.0011

P(chinese | want) = 0.0065
World knowledge; culture
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As simple as they are, n-gram probabilities capture a 
range of interesting facts about language:

P(english | want) = 0.0011

P(chinese | want) = 0.0065

P(to | want) = 0.66

P(eat | to) = 0.28

P(food | to) = 0

P(want | spend) = 0

P(i | <s>) = 0.25

Syntactic preferences

World knowledge; culture

Discourse



A practical concern

When programming, we handle probabilities in log 
space: 

log(p1 · p2 · p3 · p4) = log p1 + log p2 + log p3 + log p4 

It’s nice that adding is faster than multiplying, but the 
main reason is that it avoids underflow.

This will be true 
for the rest of 
the class!



Numeric underflow: 
a = 1e-10 
b = 1e-90 
c = 1e-30 
d = 5e-130 
e = 1e-40 
f = 1e-100 
a * b * c * d * e *f 
→ 0.0 

But, using log-space math: 
from math import log 
log(a) + log(b) + log(c) + log(d) + log(e) + 
log(f) 
→-919.4245992851843



Next time

Smoothing and generalization 

How do we know if a language model is good? 

Text generation using language models 

Bring a computer!
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